亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Nowadays, there is evidence that several factors may increase the risk, for an infant, to require stabilisation or resuscitation manoeuvres at birth. However, this risk factors are not completely known, and a universally applicable model for predicting high-risk situations is not available yet. Considering both these limitations and the fact that the need for resuscitation at birth is a rare event, periodic training of the healthcare personnel responsible for newborn caring in the delivery room is mandatory. In this paper, we propose a machine learning approach for identifying risk factors and their impact on the birth event from real data, which can be used by personnel to progressively increase and update their knowledge. Our final goal will be the one of designing a user-friendly mobile application, able to improve the recognition rate and the planning of the appropriate interventions on high-risk patients.

相關內容

Activation patching is a popular mechanistic interpretability technique, but has many subtleties regarding how it is applied and how one may interpret the results. We provide a summary of advice and best practices, based on our experience using this technique in practice. We include an overview of the different ways to apply activation patching and a discussion on how to interpret the results. We focus on what evidence patching experiments provide about circuits, and on the choice of metric and associated pitfalls.

Large Language Models (LLMs) have emerged as powerful candidates to inform clinical decision-making processes. While these models play an increasingly prominent role in shaping the digital landscape, two growing concerns emerge in healthcare applications: 1) to what extent do LLMs exhibit social bias based on patients' protected attributes (like race), and 2) how do design choices (like architecture design and prompting strategies) influence the observed biases? To answer these questions rigorously, we evaluated eight popular LLMs across three question-answering (QA) datasets using clinical vignettes (patient descriptions) standardized for bias evaluations. We employ red-teaming strategies to analyze how demographics affect LLM outputs, comparing both general-purpose and clinically-trained models. Our extensive experiments reveal various disparities (some significant) across protected groups. We also observe several counter-intuitive patterns such as larger models not being necessarily less biased and fined-tuned models on medical data not being necessarily better than the general-purpose models. Furthermore, our study demonstrates the impact of prompt design on bias patterns and shows that specific phrasing can influence bias patterns and reflection-type approaches (like Chain of Thought) can reduce biased outcomes effectively. Consistent with prior studies, we call on additional evaluations, scrutiny, and enhancement of LLMs used in clinical decision support applications.

Test-negative designs are widely used for post-market evaluation of vaccine effectiveness, particularly in cases where randomization is not feasible. Differing from classical test-negative designs where only healthcare-seekers with symptoms are included, recent test-negative designs have involved individuals with various reasons for testing, especially in an outbreak setting. While including these data can increase sample size and hence improve precision, concerns have been raised about whether they introduce bias into the current framework of test-negative designs, thereby demanding a formal statistical examination of this modified design. In this article, using statistical derivations, causal graphs, and numerical simulations, we show that the standard odds ratio estimator may be biased if various reasons for testing are not accounted for. To eliminate this bias, we identify three categories of reasons for testing, including symptoms, disease-unrelated reasons, and case contact tracing, and characterize associated statistical properties and estimands. Based on our characterization, we show how to consistently estimate each estimand via stratification. Furthermore, we describe when these estimands correspond to the same vaccine effectiveness parameter, and, when appropriate, propose a stratified estimator that can incorporate multiple reasons for testing and improve precision. The performance of our proposed method is demonstrated through simulation studies.

In recent years, research involving human participants has been critical to advances in artificial intelligence (AI) and machine learning (ML), particularly in the areas of conversational, human-compatible, and cooperative AI. For example, around 12% and 6% of publications at recent AAAI and NeurIPS conferences indicate the collection of original human data, respectively. Yet AI and ML researchers lack guidelines for ethical, transparent research practices with human participants. Fewer than one out of every four of these AAAI and NeurIPS papers provide details of ethical review, the collection of informed consent, or participant compensation. This paper aims to bridge this gap by exploring normative similarities and differences between AI research and related fields that involve human participants. Though psychology, human-computer interaction, and other adjacent fields offer historic lessons and helpful insights, AI research raises several specific concerns$\unicode{x2014}$namely, participatory design, crowdsourced dataset development, and an expansive role of corporations$\unicode{x2014}$that necessitate a contextual ethics framework. To address these concerns, this paper outlines a set of guidelines for ethical and transparent practice with human participants in AI and ML research. These guidelines can be found in Section 4 on pp. 4$\unicode{x2013}$7.

Generalized cross-validation (GCV) is a widely-used method for estimating the squared out-of-sample prediction risk that employs a scalar degrees of freedom adjustment (in a multiplicative sense) to the squared training error. In this paper, we examine the consistency of GCV for estimating the prediction risk of arbitrary ensembles of penalized least-squares estimators. We show that GCV is inconsistent for any finite ensemble of size greater than one. Towards repairing this shortcoming, we identify a correction that involves an additional scalar correction (in an additive sense) based on degrees of freedom adjusted training errors from each ensemble component. The proposed estimator (termed CGCV) maintains the computational advantages of GCV and requires neither sample splitting, model refitting, or out-of-bag risk estimation. The estimator stems from a finer inspection of the ensemble risk decomposition and two intermediate risk estimators for the components in this decomposition. We provide a non-asymptotic analysis of the CGCV and the two intermediate risk estimators for ensembles of convex penalized estimators under Gaussian features and a linear response model. Furthermore, in the special case of ridge regression, we extend the analysis to general feature and response distributions using random matrix theory, which establishes model-free uniform consistency of CGCV.

Counterfactuals have been established as a popular explainability technique which leverages a set of minimal edits to alter the prediction of a classifier. When considering conceptual counterfactuals on images, the edits requested should correspond to salient concepts present in the input data. At the same time, conceptual distances are defined by knowledge graphs, ensuring the optimality of conceptual edits. In this work, we extend previous endeavors on graph edits as counterfactual explanations by conducting a comparative study which encompasses both supervised and unsupervised Graph Neural Network (GNN) approaches. To this end, we pose the following significant research question: should we represent input data as graphs, which is the optimal GNN approach in terms of performance and time efficiency to generate minimal and meaningful counterfactual explanations for black-box image classifiers?

Any interactive protocol between a pair of parties can be reliably simulated in the presence of noise with a multiplicative overhead on the number of rounds (Schulman 1996). The reciprocal of the best (least) overhead is called the interactive capacity of the noisy channel. In this work, we present lower bounds on the interactive capacity of the binary erasure channel. Our lower bound improves the best known bound due to Ben-Yishai et al. 2021 by roughly a factor of 1.75. The improvement is due to a tighter analysis of the correctness of the simulation protocol using error pattern analysis. More precisely, instead of using the well-known technique of bounding the least number of erasures needed to make the simulation fail, we identify and bound the probability of specific erasure patterns causing simulation failure. We remark that error pattern analysis can be useful in solving other problems involving stochastic noise, such as bounding the interactive capacity of different channels.

Model predictive control (MPC) for linear systems with quadratic costs and linear constraints is shown to admit an exact representation as an implicit neural network. A method to "unravel" the implicit neural network of MPC into an explicit one is also introduced. As well as building links between model-based and data-driven control, these results emphasize the capability of implicit neural networks for representing solutions of optimisation problems, as such problems are themselves implicitly defined functions.

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

北京阿比特科技有限公司