亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of mixed sparse linear regression with two components, where two real $k$-sparse signals $\beta_1, \beta_2$ are to be recovered from $n$ unlabelled noisy linear measurements. The sparsity is allowed to be sublinear in the dimension, and additive noise is assumed to be independent Gaussian with variance $\sigma^2$. Prior work has shown that the problem suffers from a $\frac{k}{SNR^2}$-to-$\frac{k^2}{SNR^2}$ statistical-to-computational gap, resembling other computationally challenging high-dimensional inference problems such as Sparse PCA and Robust Sparse Mean Estimation; here $SNR$ is the signal-to-noise ratio. We establish the existence of a more extensive computational barrier for this problem through the method of low-degree polynomials, but show that the problem is computationally hard only in a very narrow symmetric parameter regime. We identify a smooth information-computation tradeoff between the sample complexity $n$ and runtime for any randomized algorithm in this hard regime. Via a simple reduction, this provides novel rigorous evidence for the existence of a computational barrier to solving exact support recovery in sparse phase retrieval with sample complexity $n = \tilde{o}(k^2)$. Our second contribution is to analyze a simple thresholding algorithm which, outside of the narrow regime where the problem is hard, solves the associated mixed regression detection problem in $O(np)$ time with square-root the number of samples and matches the sample complexity required for (non-mixed) sparse linear regression; this allows the recovery problem to be subsequently solved by state-of-the-art techniques from the dense case. As a special case of our results, we show that this simple algorithm is order-optimal among a large family of algorithms in solving exact signed support recovery in sparse linear regression.

相關內容

A cut-down de Bruijn sequence is a cyclic string of length $L$, where $1 \leq L \leq k^n$, such that every substring of length $n$ appears at most once. Etzion [Theor. Comp. Sci 44 (1986)] gives an algorithm to construct binary cut-down de Bruijn sequences that requires $o(n)$ simple $n$-bit operations per symbol generated. In this paper, we simplify the algorithm and improve the running time to $\mathcal{O}(n)$ time per symbol generated using $\mathcal{O}(n)$ space. We then provide the first successor-rule approach for constructing a binary cut-down de Bruijn sequence by leveraging recent ranking algorithms for fixed-density Lyndon words. Finally, we develop an algorithm to generate cut-down de Bruijn sequences for $k>2$ that runs in $\mathcal{O}(n)$ time per symbol using $\mathcal{O}(n)$ space after some initialization. While our $k$-ary algorithm is based on our simplified version of Etzion's binary algorithm, a number of non-trivial adaptations are required to generalize to larger alphabets.

We study local filters for the Lipschitz property of real-valued functions $f: V \to [0,r]$, where the Lipschitz property is defined with respect to an arbitrary undirected graph $G=(V,E)$. We give nearly optimal local Lipschitz filters both with respect to $\ell_1$ distance and $\ell_0$ distance. Previous work only considered unbounded-range functions over $[n]^d$. Jha and Raskhodnikova (SICOMP `13) gave an algorithm for such functions with lookup complexity exponential in $d$, which Awasthi et al.\ (ACM Trans. Comput. Theory) showed was necessary in this setting. By considering the natural class of functions whose range is bounded in $[0,r]$, we circumvent this lower bound and achieve running time $(d^r\log n)^{O(\log r)}$ for the $\ell_1$-respecting filter and $d^{O(r)}\text{polylog }n$ for the $\ell_0$-respecting filter for functions over $[n]^d$. Furthermore, we show that our algorithms are nearly optimal in terms of the dependence on $r$ for the domain $\{0,1\}^d$, an important special case of the domain $[n]^d$. In addition, our lower bound resolves an open question of Awasthi et al., removing one of the conditions necessary for their lower bound for general range. We prove our lower bound via a reduction from distribution-free Lipschitz testing. Finally, we provide two applications of our local filters. First, they can be used in conjunction with the Laplace mechanism for differential privacy to provide filter mechanisms for privately releasing outputs of black box functions even in the presence of malicious clients. Second, we use them to obtain the first tolerant testers for the Lipschitz property.

The continuous representation of spatiotemporal data commonly relies on using abstract data types, such as \textit{moving regions}, to represent entities whose shape and position continuously change over time. Creating this representation from discrete snapshots of real-world entities requires using interpolation methods to compute in-between data representations and estimate the position and shape of the object of interest at arbitrary temporal points. Existing region interpolation methods often fail to generate smooth and realistic representations of a region's evolution. However, recent advancements in deep learning techniques have revealed the potential of deep models trained on discrete observations to capture spatiotemporal dependencies through implicit feature learning. In this work, we explore the capabilities of Conditional Variational Autoencoder (C-VAE) models to generate smooth and realistic representations of the spatiotemporal evolution of moving regions. We evaluate our proposed approach on a sparsely annotated dataset on the burnt area of a forest fire. We apply compression operations to sample from the dataset and use the C-VAE model and other commonly used interpolation algorithms to generate in-between region representations. To evaluate the performance of the methods, we compare their interpolation results with manually annotated data and regions generated by a U-Net model. We also assess the quality of generated data considering temporal consistency metrics. The proposed C-VAE-based approach demonstrates competitive results in geometric similarity metrics. It also exhibits superior temporal consistency, suggesting that C-VAE models may be a viable alternative to modelling the spatiotemporal evolution of 2D moving regions.

We study regret minimization in online episodic linear Markov Decision Processes, and obtain rate-optimal $\widetilde O (\sqrt K)$ regret where $K$ denotes the number of episodes. Our work is the first to establish the optimal (w.r.t.~$K$) rate of convergence in the stochastic setting with bandit feedback using a policy optimization based approach, and the first to establish the optimal (w.r.t.~$K$) rate in the adversarial setup with full information feedback, for which no algorithm with an optimal rate guarantee is currently known.

Text-to-motion generation is a formidable task, aiming to produce human motions that align with the input text while also adhering to human capabilities and physical laws. While there have been advancements in diffusion models, their application in discrete spaces remains underexplored. Current methods often overlook the varying significance of different motions, treating them uniformly. It is essential to recognize that not all motions hold the same relevance to a particular textual description. Some motions, being more salient and informative, should be given precedence during generation. In response, we introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM), which utilizes a Transformer-based VQ-VAE to derive a concise, discrete motion representation, incorporating a global self-attention mechanism and a regularization term to counteract code collapse. We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token within the entire motion sequence. This approach retains the most salient motions during the reverse diffusion process, leading to more semantically rich and varied motions. Additionally, we formulate two strategies to gauge the importance of motion tokens, drawing from both textual and visual indicators. Comprehensive experiments on the HumanML3D and KIT-ML datasets confirm that our model surpasses existing techniques in fidelity and diversity, particularly for intricate textual descriptions.

Given a sequence of sets, where each set has a timestamp and contains an arbitrary number of elements, temporal sets prediction aims to predict the elements in the subsequent set. Previous studies for temporal sets prediction mainly focus on the modelling of elements and implicitly represent each user's preference based on his/her interacted elements. However, user preferences are often continuously evolving and the evolutionary trend cannot be fully captured with the indirect learning paradigm of user preferences. To this end, we propose a continuous-time user preference modelling framework for temporal sets prediction, which explicitly models the evolving preference of each user by maintaining a memory bank to store the states of all the users and elements. Specifically, we first construct a universal sequence by arranging all the user-set interactions in a non-descending temporal order, and then chronologically learn from each user-set interaction. For each interaction, we continuously update the memories of the related user and elements based on their currently encoded messages and past memories. Moreover, we present a personalized user behavior learning module to discover user-specific characteristics based on each user's historical sequence, which aggregates the previously interacted elements from dual perspectives according to the user and elements. Finally, we develop a set-batch algorithm to improve the model efficiency, which can create time-consistent batches in advance and achieve 3.5x and 3.0x speedups in the training and evaluation process on average. Experiments on four real-world datasets demonstrate the superiority of our approach over state-of-the-arts under both transductive and inductive settings. The good interpretability of our method is also shown.

We present a stochastic method for efficiently computing the solution of time-fractional partial differential equations (fPDEs) that model anomalous diffusion problems of the subdiffusive type. After discretizing the fPDE in space, the ensuing system of fractional linear equations is solved resorting to a Monte Carlo evaluation of the corresponding Mittag-Leffler matrix function. This is accomplished through the approximation of the expected value of a suitable multiplicative functional of a stochastic process, which consists of a Markov chain whose sojourn times in every state are Mittag-Leffler distributed. The resulting algorithm is able to calculate the solution at conveniently chosen points in the domain with high efficiency. In addition, we present how to generalize this algorithm in order to compute the complete solution. For several large-scale numerical problems, our method showed remarkable performance in both shared-memory and distributed-memory systems, achieving nearly perfect scalability up to 16,384 CPU cores.

When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall \textit{system-level} competence of a robot as it operates in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.

The combination of Terahertz (THz) and massive multiple-input multiple-output (MIMO) is promising to meet the increasing data rate demand of future wireless communication systems thanks to the huge bandwidth and spatial degrees of freedom. However, unique channel features such as the near-field beam split effect make channel estimation particularly challenging in THz massive MIMO systems. On one hand, adopting the conventional angular domain transformation dictionary designed for low-frequency far-field channels will result in degraded channel sparsity and destroyed sparsity structure in the transformed domain. On the other hand, most existing compressive sensing-based channel estimation algorithms cannot achieve high performance and low complexity simultaneously. To alleviate these issues, in this paper, we first adopt frequency-dependent near-field dictionaries to maintain good channel sparsity and sparsity structure in the transformed domain under the near-field beam split effect. Then, a deep unfolding-based wideband THz massive MIMO channel estimation algorithm is proposed. In each iteration of the unitary approximate message passing-sparse Bayesian learning algorithm, the optimal update rule is learned by a deep neural network (DNN), whose structure is customized to effectively exploit the inherent channel patterns. Furthermore, a mixed training method based on novel designs of the DNN structure and the loss function is developed to effectively train data from different system configurations. Simulation results validate the superiority of the proposed algorithm in terms of performance, complexity, and robustness.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

北京阿比特科技有限公司