亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the realm of social media, users frequently convey personal sentiments, with some potentially indicating cognitive distortions or suicidal tendencies. Timely recognition of such signs is pivotal for effective interventions. In response, we introduce two novel annotated datasets from Chinese social media, focused on cognitive distortions and suicidal risk classification. We propose a comprehensive benchmark using both supervised learning and large language models, especially from the GPT series, to evaluate performance on these datasets. To assess the capabilities of the large language models, we employed three strategies: zero-shot, few-shot, and fine-tuning. Furthermore, we deeply explored and analyzed the performance of these large language models from a psychological perspective, shedding light on their strengths and limitations in identifying and understanding complex human emotions. Our evaluations underscore a performance difference between the two approaches, with the models often challenged by subtle category distinctions. While GPT-4 consistently delivered strong results, GPT-3.5 showed marked improvement in suicide risk classification after fine-tuning. This research is groundbreaking in its evaluation of large language models for Chinese social media tasks, accentuating the models' potential in psychological contexts. All datasets and code are made available.

相關內容

Cybersecurity challenges and the need for awareness are well-recognized in developed countries, but this still needs attention in less-developed countries. With the expansion of technology, security concerns are also becoming more prevalent worldwide. This paper presents a design and creation research study exploring which factors we should consider when designing cybersecurity awareness solutions for young people in developing countries. We have developed prototypes of mini-cybersecurity awareness applications and conducted a pilot study with eight participants (aged 16-30) from Gambia, Eritrea, and Syria. Our findings show that factors like the influence of culture and social constructs, literacy, and language competence, the way of introducing cybersecurity terms and concepts, and the need for reflection are essential to consider when designing and developing cybersecurity awareness solutions for target users in developing countries. The findings of this study will guide future researchers to design more inclusive cybersecurity awareness solutions for users in developing countries.

Temporal facts, which are used to describe events that occur during specific time periods, have become a topic of increased interest in the field of knowledge graph (KG) research. In terms of quality management, the introduction of time restrictions brings new challenges to maintaining the temporal consistency of KGs. Previous studies rely on manually enumerated temporal constraints to detect conflicts, which are labor-intensive and may have granularity issues. To address this problem, we start from the common pattern of temporal facts and propose a pattern-based temporal constraint mining method, PaTeCon. Unlike previous studies, PaTeCon uses graph patterns and statistical information relevant to the given KG to automatically generate temporal constraints, without the need for human experts. In this paper, we illustrate how this method can be optimized to achieve significant speed improvement. We also annotate Wikidata and Freebase to build two new benchmarks for conflict detection. Extensive experiments demonstrate that our pattern-based automatic constraint mining approach is highly effective in generating valuable temporal constraints.

When designing multi-stakeholder privacy systems, it is important to consider how different groups of social media users have different goals and requirements for privacy. Additionally, we must acknowledge that it is important to keep in mind that even a single creator's needs can change as their online visibility and presence shifts, and that robust multi-stakeholder privacy systems should account for these shifts. Using the framework of contextual integrity, we explain a theoretical basis for how to evaluate the potential changing privacy needs of users as their profiles undergo a sudden rise in online attention, and ongoing projects to understand these potential shifts in perspectives.

The advent of artificial intelligence-generated content (AIGC) represents a pivotal moment in the evolution of information technology. With AIGC, it can be effortless to generate high-quality data that is challenging for the public to distinguish. Nevertheless, the proliferation of generative data across cyberspace brings security and privacy issues, including privacy leakages of individuals and media forgery for fraudulent purposes. Consequently, both academia and industry begin to emphasize the trustworthiness of generative data, successively providing a series of countermeasures for security and privacy. In this survey, we systematically review the security and privacy on generative data in AIGC, particularly for the first time analyzing them from the perspective of information security properties. Specifically, we reveal the successful experiences of state-of-the-art countermeasures in terms of the foundational properties of privacy, controllability, authenticity, and compliance, respectively. Finally, we summarize the open challenges and potential exploration directions from each of theses properties.

To understand how well a large language model captures certain semantic or syntactic features, researchers typically apply probing classifiers. However, the accuracy of these classifiers is critical for the correct interpretation of the results. If a probing classifier exhibits low accuracy, this may be due either to the fact that the language model does not capture the property under investigation, or to shortcomings in the classifier itself, which is unable to adequately capture the characteristics encoded in the internal representations of the model. Consequently, for more effective diagnosis, it is necessary to use the most accurate classifiers possible for a particular type of task. Logistic regression on the output representation of the transformer neural network layer is most often used to probing the syntactic properties of the language model. We show that using gradient boosting decision trees at the Knowledge Neuron layer, i.e., at the hidden layer of the feed-forward network of the transformer as a probing classifier for recognizing parts of a sentence is more advantageous than using logistic regression on the output representations of the transformer layer. This approach is also preferable to many other methods. The gain in error rate, depending on the preset, ranges from 9-54%

In the realm of public health, vaccination stands as the cornerstone for mitigating disease risks and controlling their proliferation. The recent COVID-19 pandemic has highlighted how vaccines play a crucial role in keeping us safe. However the situation involves a mix of perspectives, with skepticism towards vaccines prevailing for various reasons such as political dynamics, apprehensions about side effects, and more. The paper addresses the challenge of comprehensively understanding and categorizing these diverse concerns expressed in the context of vaccination. Our focus is on developing a robust multi-label classifier capable of assigning specific concern labels to tweets based on the articulated apprehensions towards vaccines. To achieve this, we delve into the application of a diverse set of advanced natural language processing techniques and machine learning algorithms including transformer models like BERT, state of the art GPT 3.5, Classifier Chains & traditional methods like SVM, Random Forest, Naive Bayes. We see that the cutting-edge large language model outperforms all other methods in this context.

While semantic segmentation has seen tremendous improvements in the past, there are still significant labeling efforts necessary and the problem of limited generalization to classes that have not been present during training. To address this problem, zero-shot semantic segmentation makes use of large self-supervised vision-language models, allowing zero-shot transfer to unseen classes. In this work, we build a benchmark for Multi-domain Evaluation of Semantic Segmentation (MESS), which allows a holistic analysis of performance across a wide range of domain-specific datasets such as medicine, engineering, earth monitoring, biology, and agriculture. To do this, we reviewed 120 datasets, developed a taxonomy, and classified the datasets according to the developed taxonomy. We select a representative subset consisting of 22 datasets and propose it as the MESS benchmark. We evaluate eight recently published models on the proposed MESS benchmark and analyze characteristics for the performance of zero-shot transfer models. The toolkit is available at //github.com/blumenstiel/MESS.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司