In this study, we focus on the development and implementation of a comprehensive ensemble of numerical time series forecasting models, collectively referred to as the Group of Numerical Time Series Prediction Model (G-NM). This inclusive set comprises traditional models such as Autoregressive Integrated Moving Average (ARIMA), Holt-Winters' method, and Support Vector Regression (SVR), in addition to modern neural network models including Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). G-NM is explicitly constructed to augment our predictive capabilities related to patterns and trends inherent in complex natural phenomena. By utilizing time series data relevant to these events, G-NM facilitates the prediction of such phenomena over extended periods. The primary objective of this research is to both advance our understanding of such occurrences and to significantly enhance the accuracy of our forecasts. G-NM encapsulates both linear and non-linear dependencies, seasonalities, and trends present in time series data. Each of these models contributes distinct strengths, from ARIMA's resilience in handling linear trends and seasonality, SVR's proficiency in capturing non-linear patterns, to LSTM's adaptability in modeling various components of time series data. Through the exploitation of the G-NM potential, we strive to advance the state-of-the-art in large-scale time series forecasting models. We anticipate that this research will represent a significant stepping stone in our ongoing endeavor to comprehend and forecast the complex events that constitute the natural world.
In this paper, we propose a neural network learning algorithm for solving eigenvalue problems and boundary value problems (BVPs) for elliptic operators and initial BVPs (IBVPs) of quasi-linear parabolic equations in high dimensions as well as optimal stochastic controls. The method is based on the Martingale property in the stochastic representation for the eigenvalue/BVP/IBVP problems and martingale principle for optimal stochastic controls. A loss function based on the Martingale property can be used for efficient optimization by sampling the stochastic processes associated with the elliptic operators or value process for stochastic controls. The proposed algorithm can be used for eigenvalue problems and BVPs and IBVPs with Dirichlet, Neumann, and Robin boundaries in bounded or unbounded domains and some feedback stochastic control problems.
Results from the TinyML community demonstrate that, it is possible to execute machine learning models directly on the terminals themselves, even if these are small microcontroller-based devices. However, to date, practitioners in the domain lack convenient all-in-one toolkits to help them evaluate the feasibility of executing arbitrary models on arbitrary low-power IoT hardware. To this effect, we present in this paper U-TOE, a universal toolkit we designed to facilitate the task of IoT designers and researchers, by combining functionalities from a low-power embedded OS, a generic model transpiler and compiler, an integrated performance measurement module, and an open-access remote IoT testbed. We provide an open source implementation of U-TOE and we demonstrate its use to experimentally evaluate the performance of various models, on a wide variety of low-power IoT boards, based on popular microcontroller architectures. U-TOE allows easily reproducible and customizable comparative evaluation experiments on a wide variety of IoT hardware all-at-once. The availability of a toolkit such as U-TOE is desirable to accelerate research combining Artificial Intelligence and IoT towards fully exploiting the potential of edge computing.
In this paper, we study distributionally robust offline reinforcement learning (robust offline RL), which seeks to find an optimal policy purely from an offline dataset that can perform well in perturbed environments. In specific, we propose a generic algorithm framework called Doubly Pessimistic Model-based Policy Optimization ($P^2MPO$), which features a novel combination of a flexible model estimation subroutine and a doubly pessimistic policy optimization step. Notably, the double pessimism principle is crucial to overcome the distributional shifts incurred by (i) the mismatch between the behavior policy and the target policies; and (ii) the perturbation of the nominal model. Under certain accuracy conditions on the model estimation subroutine, we prove that $P^2MPO$ is sample-efficient with robust partial coverage data, which only requires the offline data to have good coverage of the distributions induced by the optimal robust policy and the perturbed models around the nominal model. By tailoring specific model estimation subroutines for concrete examples of RMDPs, including tabular RMDPs, factored RMDPs, kernel and neural RMDPs, we prove that $P^2MPO$ enjoys a $\tilde{\mathcal{O}}(n^{-1/2})$ convergence rate, where $n$ is the dataset size. We highlight that all these examples, except tabular RMDPs, are first identified and proven tractable by this work. Furthermore, we continue our study of robust offline RL in the robust Markov games (RMGs). By extending the double pessimism principle identified for single-agent RMDPs, we propose another algorithm framework that can efficiently find the robust Nash equilibria among players using only robust unilateral (partial) coverage data. To our best knowledge, this work proposes the first general learning principle -- double pessimism -- for robust offline RL and shows that it is provably efficient with general function approximation.
After the inception of emotion recognition or affective computing, it has increasingly become an active research topic due to its broad applications. Over the past couple of decades, emotion recognition models have gradually migrated from statistically shallow models to neural network-based deep models, which can significantly boost the performance of emotion recognition models and consistently achieve the best results on different benchmarks. Therefore, in recent years, deep models have always been considered the first option for emotion recognition. However, the debut of large language models (LLMs), such as ChatGPT, has remarkably astonished the world due to their emerged capabilities of zero/few-shot learning, in-context learning, chain-of-thought, and others that are never shown in previous deep models. In the present paper, we comprehensively investigate how the LLMs perform in emotion recognition in terms of diverse aspects, including in-context learning, few-short learning, accuracy, generalisation, and explanation. Moreover, we offer some insights and pose other potential challenges, hoping to ignite broader discussions about enhancing emotion recognition in the new era of advanced and generalised large models.
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.
Recent years have witnessed the enormous success of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. Currently, however, it is not yet well-understood how ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a framework based on convex regions, which can faithfully incorporate ontological knowledge into the vector space embedding. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding approaches are not capable of modelling even very simple types of rules. Second, we show that our framework can represent ontologies that are expressed using so-called quasi-chained existential rules in an exact way, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.