While graph convolution based methods have become the de-facto standard for graph representation learning, their applications to disease prediction tasks remain quite limited, particularly in the classification of neurodevelopmental and neurodegenerative brain disorders. In this paper, we introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling, as well as skip connections and identity mapping. The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges, respectively, with the aim of augmenting predictive capabilities and providing a holistic perspective on the underlying mechanisms of brain disorders. Skip connections enable the direct flow of information from the input features to later layers of the network, while identity mapping helps maintain the structural information of the graph during feature learning. We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI), for the prediction of autism spectrum disorder and Alzheimer's disease, respectively. Experimental results demonstrate the competitive performance of our approach in comparison with recent baselines in terms of several evaluation metrics, achieving relative improvements of 50% and 13.56% in classification accuracy over graph convolutional networks on ABIDE and ADNI, respectively.
In this article, we propose an interval constraint programming method for globally solving catalog-based categorical optimization problems. It supports catalogs of arbitrary size and properties of arbitrary dimension, and does not require any modeling effort from the user. A novel catalog-based contractor (or filtering operator) guarantees consistency between the categorical properties and the existing catalog items. This results in an intuitive and generic approach that is exact, rigorous (robust to roundoff errors) and can be easily implemented in an off-the-shelf interval-based continuous solver that interleaves branching and constraint propagation. We demonstrate the validity of the approach on a numerical problem in which a categorical variable is described by a two-dimensional property space. A Julia prototype is available as open-source software under the MIT license at //github.com/cvanaret/CateGOrical.jl
Fully explicit stabilized multirate (mRKC) methods are well-suited for the numerical solution of large multiscale systems of stiff ordinary differential equations thanks to their improved stability properties. To demonstrate their efficiency for the numerical solution of stiff, multiscale, nonlinear parabolic PDE's, we apply mRKC methods to the monodomain equation from cardiac electrophysiology. In doing so, we propose an improved version, specifically tailored to the monodomain model, which leads to the explicit exponential multirate stabilized (emRKC) method. Several numerical experiments are conducted to evaluate the efficiency of both mRKC and emRKC, while taking into account different finite element meshes (structured and unstructured) and realistic ionic models. The new emRKC method typically outperforms a standard implicit-explicit baseline method for cardiac electrophysiology. Code profiling and strong scalability results further demonstrate that emRKC is faster and inherently parallel without sacrificing accuracy.
Multimodal deep learning utilizing imaging and diagnostic reports has made impressive progress in the field of medical imaging diagnostics, demonstrating a particularly strong capability for auxiliary diagnosis in cases where sufficient annotation information is lacking. Nonetheless, localizing diseases accurately without detailed positional annotations remains a challenge. Although existing methods have attempted to utilize local information to achieve fine-grained semantic alignment, their capability in extracting the fine-grained semantics of the comprehensive contextual within reports is limited. To solve this problem, we introduce a new method that takes full sentences from textual reports as the basic units for local semantic alignment. Our approach combines chest X-ray images with their corresponding textual reports, performing contrastive learning at both global and local levels. The leading results obtained by our method on multiple datasets confirm its efficacy in the task of lesion localization.
Linear codes are widely studied in coding theory as they have nice applications in distributed storage, combinatorics, lattices, cryptography and so on. Constructing linear codes with desirable properties is an interesting research topic. In this paper, based on the augmentation technique, we present two families of linear codes from some functions over finite fields. The first family of linear codes is constructed from monomial functions over finite fields. The locality of them is determined and the weight distributions of two subfamilies of the codes are also given. An infinite family of almost optimal recoverable codes and some optimal recoverable codes are obtained from the linear codes. In particular, the two subfamilies of the codes are proved to be both optimally or almost optimally extendable and self-orthogonal. The second family of linear codes is constructed from weakly regular bent functions over finite fields and their weight distribution is determined. This family of codes is proved to have locality 3 for some cases and is conjectured to have locality 2 for other cases. Particularly, two families of optimal locally recoverable codes are derived from the linear codes. Besides, this family of codes is also proved to be both optimally or almost optimally extendable and self-orthogonal.
Sensory perception originates from the responses of sensory neurons, which react to a collection of sensory signals linked to various physical attributes of a singular perceptual object. Unraveling how the brain extracts perceptual information from these neuronal responses is a pivotal challenge in both computational neuroscience and machine learning. Here we introduce a statistical mechanical theory, where perceptual information is first encoded in the correlated variability of sensory neurons and then reformatted into the firing rates of downstream neurons. Applying this theory, we illustrate the encoding of motion direction using neural covariance and demonstrate high-fidelity direction recovery by spiking neural networks. Networks trained under this theory also show enhanced performance in classifying natural images, achieving higher accuracy and faster inference speed. Our results challenge the traditional view of neural covariance as a secondary factor in neural coding, highlighting its potential influence on brain function.
Multiscale stochastic dynamical systems have been widely adopted to a variety of scientific and engineering problems due to their capability of depicting complex phenomena in many real world applications. This work is devoted to investigating the effective dynamics for slow-fast stochastic dynamical systems. Given observation data on a short-term period satisfying some unknown slow-fast stochastic systems, we propose a novel algorithm including a neural network called Auto-SDE to learn invariant slow manifold. Our approach captures the evolutionary nature of a series of time-dependent autoencoder neural networks with the loss constructed from a discretized stochastic differential equation. Our algorithm is also validated to be accurate, stable and effective through numerical experiments under various evaluation metrics.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.