There has recently been an explosion of interest in how "higher-order" structures emerge in complex systems. This "emergent" organization has been found in a variety of natural and artificial systems, although at present the field lacks a unified understanding of what the consequences of higher-order synergies and redundancies are for systems. Typical research treat the presence (or absence) of synergistic information as a dependent variable and report changes in the level of synergy in response to some change in the system. Here, we attempt to flip the script: rather than treating higher-order information as a dependent variable, we use evolutionary optimization to evolve boolean networks with significant higher-order redundancies, synergies, or statistical complexity. We then analyse these evolved populations of networks using established tools for characterizing discrete dynamics: the number of attractors, average transient length, and Derrida coefficient. We also assess the capacity of the systems to integrate information. We find that high-synergy systems are unstable and chaotic, but with a high capacity to integrate information. In contrast, evolved redundant systems are extremely stable, but have negligible capacity to integrate information. Finally, the complex systems that balance integration and segregation (known as Tononi-Sporns-Edelman complexity) show features of both chaosticity and stability, with a greater capacity to integrate information than the redundant systems while being more stable than the random and synergistic systems. We conclude that there may be a fundamental trade-off between the robustness of a systems dynamics and its capacity to integrate information (which inherently requires flexibility and sensitivity), and that certain kinds of complexity naturally balance this trade-off.
Collaborative problem-solving (CPS) is a vital skill used both in the workplace and in educational environments. CPS is useful in tackling increasingly complex global, economic, and political issues and is considered a central 21st century skill. The increasingly connected global community presents a fruitful opportunity for creative and collaborative problem-solving interactions and solutions that involve diverse perspectives. Unfortunately, women and underrepresented minorities (URMs) often face obstacles during collaborative interactions that hinder their key participation in these problem-solving conversations. Here, we explored the communication patterns of minority and non-minority individuals working together in a CPS task. Group Communication Analysis (GCA), a temporally-sensitive computational linguistic tool, was used to examine how URM status impacts individuals' sociocognitive linguistic patterns. Results show differences across racial/ethnic groups in key sociocognitive features that indicate fruitful collaborative interactions. We also investigated how the groups' racial/ethnic composition impacts both individual and group communication patterns. In general, individuals in more demographically diverse groups displayed more productive communication behaviors than individuals who were in majority-dominated groups. We discuss the implications of individual and group diversity on communication patterns that emerge during CPS and how these patterns can impact collaborative outcomes.
For multivariate data, tandem clustering is a well-known technique aiming to improve cluster identification through initial dimension reduction. Nevertheless, the usual approach using principal component analysis (PCA) has been criticized for focusing solely on inertia so that the first components do not necessarily retain the structure of interest for clustering. To address this limitation, a new tandem clustering approach based on invariant coordinate selection (ICS) is proposed. By jointly diagonalizing two scatter matrices, ICS is designed to find structure in the data while providing affine invariant components. Certain theoretical results have been previously derived and guarantee that under some elliptical mixture models, the group structure can be highlighted on a subset of the first and/or last components. However, ICS has garnered minimal attention within the context of clustering. Two challenges associated with ICS include choosing the pair of scatter matrices and selecting the components to retain. For effective clustering purposes, it is demonstrated that the best scatter pairs consist of one scatter matrix capturing the within-cluster structure and another capturing the global structure. For the former, local shape or pairwise scatters are of great interest, as is the minimum covariance determinant (MCD) estimator based on a carefully chosen subset size that is smaller than usual. The performance of ICS as a dimension reduction method is evaluated in terms of preserving the cluster structure in the data. In an extensive simulation study and empirical applications with benchmark data sets, various combinations of scatter matrices as well as component selection criteria are compared in situations with and without outliers. Overall, the new approach of tandem clustering with ICS shows promising results and clearly outperforms the PCA-based approach.
Peridynamics (PD), as a nonlocal theory, is well-suited for solving problems with discontinuities, such as cracks. However, the nonlocal effect of peridynamics makes it computationally expensive for dynamic fracture problems in large-scale engineering applications. As an alternative, this study proposes a multi-time-step (MTS) coupling model of PD and classical continuum mechanics (CCM) based on the Arlequin framework. Peridynamics is applied to the fracture domain of the structure, while continuum mechanics is applied to the rest of the structure. The MTS method enables the peridynamic model to be solved at a small time step and the continuum mechanical model is solved at a larger time step. Consequently, higher computational efficiency is achieved for the fracture domain of the structure while ensuring computational accuracy, and this coupling method can be easily applied to large-scale engineering fracture problems.
This work explores the dimension reduction problem for Bayesian nonparametric regression and density estimation. More precisely, we are interested in estimating a functional parameter $f$ over the unit ball in $\mathbb{R}^d$, which depends only on a $d_0$-dimensional subspace of $\mathbb{R}^d$, with $d_0 < d$.It is well-known that rescaled Gaussian process priors over the function space achieve smoothness adaptation and posterior contraction with near minimax-optimal rates. Moreover, hierarchical extensions of this approach, equipped with subspace projection, can also adapt to the intrinsic dimension $d_0$ (\cite{Tokdar2011DimensionAdapt}).When the ambient dimension $d$ does not vary with $n$, the minimax rate remains of the order $n^{-\beta/(2\beta +d_0)}$.%When $d$ does not vary with $n$, the order of the minimax rate remains the same regardless of the ambient dimension $d$. However, this is up to multiplicative constants that can become prohibitively large when $d$ grows. The dependences between the contraction rate and the ambient dimension have not been fully explored yet and this work provides a first insight: we let the dimension $d$ grow with $n$ and, by combining the arguments of \cite{Tokdar2011DimensionAdapt} and \cite{Jiang2021VariableSelection}, we derive a growth rate for $d$ that still leads to posterior consistency with minimax rate.The optimality of this growth rate is then discussed.Additionally, we provide a set of assumptions under which consistent estimation of $f$ leads to a correct estimation of the subspace projection, assuming that $d_0$ is known.
Direct reciprocity based on the repeated prisoner's dilemma has been intensively studied. Most theoretical investigations have concentrated on memory-$1$ strategies, a class of elementary strategies just reacting to the previous-round outcomes. Though the properties of "All-or-None" strategies ($AoN_K$) have been discovered, simulations just confirmed the good performance of $AoN_K$ of very short memory lengths. It remains unclear how $AoN_K$ strategies would fare when players have access to longer rounds of history information. We construct a theoretical model to investigate the performance of the class of $AoN_K$ strategies of varying memory length $K$. We rigorously derive the payoffs and show that $AoN_K$ strategies of intermediate memory length $K$ are most prevalent, while strategies of larger memory lengths are less competent. Larger memory lengths make it hard for $AoN_K$ strategies to coordinate, and thus inhibiting their mutual reciprocity. We then propose the adaptive coordination strategy combining tolerance and $AoN_K$' coordination rule. This strategy behaves like $AoN_K$ strategy when coordination is not sufficient, and tolerates opponents' occasional deviations by still cooperating when coordination is sufficient. We found that the adaptive coordination strategy wins over other classic memory-$1$ strategies in various typical competition environments, and stabilizes the population at high levels of cooperation, suggesting the effectiveness of high level adaptability in resolving social dilemmas. Our work may offer a theoretical framework for exploring complex strategies using history information, which are different from traditional memory-$n$ strategies.
A component-splitting method is proposed to improve convergence characteristics for implicit time integration of compressible multicomponent reactive flows. The characteristic decomposition of flux jacobian of multicomponent Navier-Stokes equations yields a large sparse eigensystem, presenting challenges of slow convergence and high computational costs for implicit methods. To addresses this issue, the component-splitting method segregates the implicit operator into two parts: one for the flow equations (density/momentum/energy) and the other for the component equations. Each part's implicit operator employs flux-vector splitting based on their respective spectral radii to achieve accelerated convergence. This approach improves the computational efficiency of implicit iteration, mitigating the quadratic increase in time cost with the number of species. Two consistence corrections are developed to reduce the introduced component-splitting error and ensure the numerical consistency of mass fraction. Importantly, the impact of component-splitting method on accuracy is minimal as the residual approaches convergence. The accuracy, efficiency, and robustness of component-splitting method are thoroughly investigated and compared with the coupled implicit scheme through several numerical cases involving thermo-chemical nonequilibrium hypersonic flows. The results demonstrate that the component-splitting method decreases the required number of iteration steps for convergence of residual and wall heat flux, decreases the computation time per iteration step, and diminishes the residual to lower magnitude. The acceleration efficiency is enhanced with increases in CFL number and number of species.
As the development of formal proofs is a time-consuming task, it is important to devise ways of sharing the already written proofs to prevent wasting time redoing them. One of the challenges in this domain is to translate proofs written in proof assistants based on impredicative logics to proof assistants based on predicative logics, whenever impredicativity is not used in an essential way. In this paper we present a transformation for sharing proofs with a core predicative system supporting prenex universe polymorphism (like in Agda). It consists in trying to elaborate each term into a predicative universe polymorphic term as general as possible. The use of universe polymorphism is justified by the fact that mapping each universe to a fixed one in the target theory is not sufficient in most cases. During the elaboration, we need to solve unification problems in the equational theory of universe levels. In order to do this, we give a complete characterization of when a single equation admits a most general unifier. This characterization is then employed in a partial algorithm which uses a constraint-postponement strategy for trying to solve unification problems. The proposed translation is of course partial, but in practice allows one to translate many proofs that do not use impredicativity in an essential way. Indeed, it was implemented in the tool Predicativize and then used to translate semi-automatically many non-trivial developments from Matita's library to Agda, including proofs of Bertrand's Postulate and Fermat's Little Theorem, which (as far as we know) were not available in Agda yet.
It is well known that Newton's method, especially when applied to large problems such as the discretization of nonlinear partial differential equations (PDEs), can have trouble converging if the initial guess is too far from the solution. This work focuses on accelerating this convergence, in the context of the discretization of nonlinear elliptic PDEs. We first provide a quick review of existing methods, and justify our choice of learning an initial guess with a Fourier neural operator (FNO). This choice was motivated by the mesh-independence of such operators, whose training and evaluation can be performed on grids with different resolutions. The FNO is trained using a loss minimization over generated data, loss functions based on the PDE discretization. Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton's method by a large margin compared to a naive initial guess, especially for highly nonlinear or anisotropic problems.
As data from monitored structures become increasingly available, the demand grows for it to be used efficiently to add value to structural operation and management. One way in which this can be achieved is to use structural response measurements to assess the usefulness of models employed to describe deterioration processes acting on a structure, as well the mechanical behavior of the latter. This is what this work aims to achieve by first, framing Structural Health Monitoring as a Bayesian model updating problem, in which the quantities of inferential interest characterize the deterioration process and/or structural state. Then, using the posterior estimates of these quantities, a decision-theoretic definition is proposed to assess the structural and/or deterioration models based on (a) their ability to explain the data and (b) their performance on downstream decision support-based tasks. The proposed framework is demonstrated on strain response data obtained from a test specimen which was subjected to three-point bending while simultaneously exposed to accelerated corrosion leading to thickness loss. Results indicate that the level of \textit{a priori} domain knowledge on the deterioration form is critical.
Evaluating environmental variables that vary stochastically is the principal topic for designing better environmental management and restoration schemes. Both the upper and lower estimates of these variables, such as water quality indices and flood and drought water levels, are important and should be consistently evaluated within a unified mathematical framework. We propose a novel pair of Orlicz regrets to consistently bound the statistics of random variables both from below and above. Here, consistency indicates that the upper and lower bounds are evaluated with common coefficients and parameter values being different from some of the risk measures proposed thus far. Orlicz regrets can flexibly evaluate the statistics of random variables based on their tail behavior. The explicit linkage between Orlicz regrets and divergence risk measures was exploited to better comprehend them. We obtain sufficient conditions to pose the Orlicz regrets as well as divergence risk measures, and further provide gradient descent-type numerical algorithms to compute them. Finally, we apply the proposed mathematical framework to the statistical evaluation of 31-year water quality data as key environmental indicators in a Japanese river environment.