Strong data processing inequalities (SDPI) are an important object of study in Information Theory and have been well studied for $f$-divergences. Universal upper and lower bounds have been provided along with several applications, connecting them to impossibility (converse) results, concentration of measure, hypercontractivity, and so on. In this paper, we study R\'enyi divergence and the corresponding SDPI constant whose behavior seems to deviate from that of ordinary $\Phi$-divergences. In particular, one can find examples showing that the universal upper bound relating its SDPI constant to the one of Total Variation does not hold in general. In this work, we prove, however, that the universal lower bound involving the SDPI constant of the Chi-square divergence does indeed hold. Furthermore, we also provide a characterization of the distribution that achieves the supremum when $\alpha$ is equal to $2$ and consequently compute the SDPI constant for R\'enyi divergence of the general binary channel.
Large Language Models (LLMs) are often trained on vast amounts of undisclosed data, motivating the development of post-hoc Membership Inference Attacks (MIAs) to gain insight into their training data composition. However, in this paper, we identify inherent challenges in post-hoc MIA evaluation due to potential distribution shifts between collected member and non-member datasets. Using a simple bag-of-words classifier, we demonstrate that datasets used in recent post-hoc MIAs suffer from significant distribution shifts, in some cases achieving near-perfect distinction between members and non-members. This implies that previously reported high MIA performance may be largely attributable to these shifts rather than model memorization. We confirm that randomized, controlled setups eliminate such shifts and thus enable the development and fair evaluation of new MIAs. However, we note that such randomized setups are rarely available for the latest LLMs, making post-hoc data collection still required to infer membership for real-world LLMs. As a potential solution, we propose a Regression Discontinuity Design (RDD) approach for post-hoc data collection, which substantially mitigates distribution shifts. Evaluating various MIA methods on this RDD setup yields performance barely above random guessing, in stark contrast to previously reported results. Overall, our findings highlight the challenges in accurately measuring LLM memorization and the need for careful experimental design in (post-hoc) membership inference tasks.
Graphs are an essential data structure utilized to represent relationships in real-world scenarios. Prior research has established that Graph Neural Networks (GNNs) deliver impressive outcomes in graph-centric tasks, such as link prediction and node classification. Despite these advancements, challenges like data sparsity and limited generalization capabilities continue to persist. Recently, Large Language Models (LLMs) have gained attention in natural language processing. They excel in language comprehension and summarization. Integrating LLMs with graph learning techniques has attracted interest as a way to enhance performance in graph learning tasks. In this survey, we conduct an in-depth review of the latest state-of-the-art LLMs applied in graph learning and introduce a novel taxonomy to categorize existing methods based on their framework design. We detail four unique designs: i) GNNs as Prefix, ii) LLMs as Prefix, iii) LLMs-Graphs Integration, and iv) LLMs-Only, highlighting key methodologies within each category. We explore the strengths and limitations of each framework, and emphasize potential avenues for future research, including overcoming current integration challenges between LLMs and graph learning techniques, and venturing into new application areas. This survey aims to serve as a valuable resource for researchers and practitioners eager to leverage large language models in graph learning, and to inspire continued progress in this dynamic field. We consistently maintain the related open-source materials at \url{//github.com/HKUDS/Awesome-LLM4Graph-Papers}.
Diffusion models (DMs) have gained attention in Missing Data Imputation (MDI), but there remain two long-neglected issues to be addressed: (1). Inaccurate Imputation, which arises from inherently sample-diversification-pursuing generative process of DMs. (2). Difficult Training, which stems from intricate design required for the mask matrix in model training stage. To address these concerns within the realm of numerical tabular datasets, we introduce a novel principled approach termed Kernelized Negative Entropy-regularized Wasserstein gradient flow Imputation (KnewImp). Specifically, based on Wasserstein gradient flow (WGF) framework, we first prove that issue (1) stems from the cost functionals implicitly maximized in DM-based MDI are equivalent to the MDI's objective plus diversification-promoting non-negative terms. Based on this, we then design a novel cost functional with diversification-discouraging negative entropy and derive our KnewImp approach within WGF framework and reproducing kernel Hilbert space. After that, we prove that the imputation procedure of KnewImp can be derived from another cost functional related to the joint distribution, eliminating the need for the mask matrix and hence naturally addressing issue (2). Extensive experiments demonstrate that our proposed KnewImp approach significantly outperforms existing state-of-the-art methods.
Missing Not at Random (MNAR) and nonnormal data are challenging to handle. Traditional missing data analytical techniques such as full information maximum likelihood estimation (FIML) may fail with nonnormal data as they are built on normal distribution assumptions. Two-Stage Robust Estimation (TSRE) does manage nonnormal data, but both FIML and TSRE are less explored in longitudinal studies under MNAR conditions with nonnormal distributions. Unlike traditional statistical approaches, machine learning approaches do not require distributional assumptions about the data. More importantly, they have shown promise for MNAR data; however, their application in longitudinal studies, addressing both Missing at Random (MAR) and MNAR scenarios, is also underexplored. This study utilizes Monte Carlo simulations to assess and compare the effectiveness of six analytical techniques for missing data within the growth curve modeling framework. These techniques include traditional approaches like FIML and TSRE, machine learning approaches by single imputation (K-Nearest Neighbors and missForest), and machine learning approaches by multiple imputation (micecart and miceForest). We investigate the influence of sample size, missing data rate, missing data mechanism, and data distribution on the accuracy and efficiency of model estimation. Our findings indicate that FIML is most effective for MNAR data among the tested approaches. TSRE excels in handling MAR data, while missForest is only advantageous in limited conditions with a combination of very skewed distributions, very large sample sizes (e.g., n larger than 1000), and low missing data rates.
We study a higher-order surface finite element (SFEM) penalty-based discretization of the tangential surface Stokes problem. Several discrete formulations are investigated which are equivalent in the continuous setting. The impact of the choice of discretization of the diffusion term and of the divergence term on numerical accuracy and convergence, as well as on implementation advantages, is discussed. We analyze the inf-sup stability of the discrete scheme in a generic approach by lifting stable finite element pairs known from the literature. A discretization error analysis in tangential norms then shows optimal order convergence of an isogeometric setting that requires only geometric knowledge of the discrete surface.
This work presents a procedure to solve the Euler equations by explicitly updating, in a conservative manner, a generic thermodynamic variable such as temperature, pressure or entropy instead of the total energy. The presented procedure is valid for any equation of state and spatial discretization. When using complex equations of state such as Span-Wagner, choosing the temperature as the generic thermodynamic variable yields great reductions in the computational costs associated to thermodynamic evaluations. Results computed with a state of the art thermodynamic model are presented, and computational times are analyzed. Particular attention is dedicated to the conservation of total energy, the propagation speed of shock waves and jump conditions. The procedure is thoroughly tested using the Span-Wagner equation of state through the CoolProp thermodynamic library and the Van der Waals equation of state, both in the ideal and non-ideal compressible fluid-dynamics regimes, by comparing it to the standard total energy update and analytical solutions where available.
In the field of crowd counting research, many recent deep learning based methods have demonstrated robust capabilities for accurately estimating crowd sizes. However, the enhancement in their performance often arises from an increase in the complexity of the model structure. This paper discusses how to construct high-performance crowd counting models using only simple structures. We proposes the Fuss-Free Network (FFNet) that is characterized by its simple and efficieny structure, consisting of only a backbone network and a multi-scale feature fusion structure. The multi-scale feature fusion structure is a simple structure consisting of three branches, each only equipped with a focus transition module, and combines the features from these branches through the concatenation operation. Our proposed crowd counting model is trained and evaluated on four widely used public datasets, and it achieves accuracy that is comparable to that of existing complex models. Furthermore, we conduct a comprehensive evaluation by replacing the existing backbones of various models such as FFNet and CCTrans with different networks, including MobileNet-v3, ConvNeXt-Tiny, and Swin-Transformer-Small. The experimental results further indicate that excellent crowd counting performance can be achieved with the simplied structure proposed by us.
Segmentation models for brain lesions in MRI are commonly developed for a specific disease and trained on data with a predefined set of MRI modalities. Each such model cannot segment the disease using data with a different set of MRI modalities, nor can it segment any other type of disease. Moreover, this training paradigm does not allow a model to benefit from learning from heterogeneous databases that may contain scans and segmentation labels for different types of brain pathologies and diverse sets of MRI modalities. Is it feasible to use Federated Learning (FL) for training a single model on client databases that contain scans and labels of different brain pathologies and diverse sets of MRI modalities? We demonstrate promising results by combining appropriate, simple, and practical modifications to the model and training strategy: Designing a model with input channels that cover the whole set of modalities available across clients, training with random modality drop, and exploring the effects of feature normalization methods. Evaluation on 7 brain MRI databases with 5 different diseases shows that such FL framework can train a single model that is shown to be very promising in segmenting all disease types seen during training. Importantly, it is able to segment these diseases in new databases that contain sets of modalities different from those in training clients. These results demonstrate, for the first time, feasibility and effectiveness of using FL to train a single segmentation model on decentralised data with diverse brain diseases and MRI modalities, a necessary step towards leveraging heterogeneous real-world databases. Code will be made available at: //github.com/FelixWag/FL-MultiDisease-MRI
Computational notebooks have become the primary coding environment for data scientists. However, research on their code quality is still emerging, and the code shared is often of poor quality. Given the importance of maintenance and reusability, understanding the metrics that affect notebook code comprehensibility is crucial. Code understandability, a qualitative variable, is closely tied to user opinions. Traditional approaches to measuring it either use limited questionnaires to review a few code pieces or rely on metadata such as likes and votes in software repositories. Our approach enhances the measurement of Jupyter notebook understandability by leveraging user comments related to code understandability. As a case study, we used 542,051 Kaggle Jupyter notebooks from our previous research, named DistilKaggle. We employed a fine-tuned DistilBERT transformer to identify user comments associated with code understandability. We established a criterion called User Opinion Code Understandability (UOCU), which considers the number of relevant comments, upvotes on those comments, total notebook views, and total notebook upvotes. UOCU proved to be more effective than previous methods. Furthermore, we trained machine learning models to predict notebook code understandability based solely on their metrics. We collected 34 metrics for 132,723 final notebooks as features in our dataset, using UOCU as the label. Our predictive model, using the Random Forest classifier, achieved 89% accuracy in predicting the understandability levels of computational notebooks.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.