亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sorting operation is one of the main bottlenecks for the successive-cancellation list (SCL) decoding. This paper introduces an improvement to the SCL decoding for polar and pre-transformed polar codes that reduces the number of sorting operations without degrading the code's error-correction performance. In an SCL decoding with an optimum metric function we show that, on average, the correct branch's bit-metric value must be equal to the bit-channel capacity, and on the other hand, the average bit-metric value of a wrong branch can be at most zero. This implies that a wrong path's partial path metric value deviates from the bit-channel capacity's partial summation. For relatively reliable bit-channels, the bit metric for a wrong branch becomes very large negative number, which enables us to detect and prune such paths. We prove that, for a threshold lower than the bit-channel cutoff rate, the probability of pruning the correct path decreases exponentially by the given threshold. Based on these findings, we presented a pruning technique, and the experimental results demonstrate a substantial decrease in the amount of sorting procedures required for SCL decoding. In the stack algorithm, a similar technique is used to significantly reduce the average number of paths in the stack.

相關內容

Locally Decodable Codes (LDCs) are error-correcting codes $C:\Sigma^n\rightarrow \Sigma^m$ with super-fast decoding algorithms. They are important mathematical objects in many areas of theoretical computer science, yet the best constructions so far have codeword length $m$ that is super-polynomial in $n$, for codes with constant query complexity and constant alphabet size. In a very surprising result, Ben-Sasson et al. showed how to construct a relaxed version of LDCs (RLDCs) with constant query complexity and almost linear codeword length over the binary alphabet, and used them to obtain significantly-improved constructions of Probabilistically Checkable Proofs. In this work, we study RLDCs in the standard Hamming-error setting, and introduce their variants in the insertion and deletion (Insdel) error setting. Insdel LDCs were first studied by Ostrovsky and Paskin-Cherniavsky, and are further motivated by recent advances in DNA random access bio-technologies, in which the goal is to retrieve individual files from a DNA storage database. Our first result is an exponential lower bound on the length of Hamming RLDCs making 2 queries, over the binary alphabet. This answers a question explicitly raised by Gur and Lachish. Our result exhibits a "phase-transition"-type behavior on the codeword length for constant-query Hamming RLDCs. We further define two variants of RLDCs in the Insdel-error setting, a weak and a strong version. On the one hand, we construct weak Insdel RLDCs with with parameters matching those of the Hamming variants. On the other hand, we prove exponential lower bounds for strong Insdel RLDCs. These results demonstrate that, while these variants are equivalent in the Hamming setting, they are significantly different in the insdel setting. Our results also prove a strict separation between Hamming RLDCs and Insdel RLDCs.

The quality of generalized linear models (GLMs), frequently used by insurance companies, depends on the choice of interacting variables. The search for interactions is time-consuming, especially for data sets with a large number of variables, depends much on expert judgement of actuaries, and often relies on visual performance indicators. Therefore, we present an approach to automating the process of finding interactions that should be added to GLMs to improve their predictive power. Our approach relies on neural networks and a model-specific interaction detection method, which is computationally faster than the traditionally used methods like Friedman H-Statistic or SHAP values. In numerical studies, we provide the results of our approach on different data sets: open-source data, artificial data, and proprietary data.

Adversarial Training (AT), which is commonly accepted as one of the most effective approaches defending against adversarial examples, can largely harm the standard performance, thus has limited usefulness on industrial-scale production and applications. Surprisingly, this phenomenon is totally opposite in Natural Language Processing (NLP) task, where AT can even benefit for generalization. We notice the merit of AT in NLP tasks could derive from the discrete and symbolic input space. For borrowing the advantage from NLP-style AT, we propose Discrete Adversarial Training (DAT). DAT leverages VQGAN to reform the image data to discrete text-like inputs, i.e. visual words. Then it minimizes the maximal risk on such discrete images with symbolic adversarial perturbations. We further give an explanation from the perspective of distribution to demonstrate the effectiveness of DAT. As a plug-and-play technique for enhancing the visual representation, DAT achieves significant improvement on multiple tasks including image classification, object detection and self-supervised learning. Especially, the model pre-trained with Masked Auto-Encoding (MAE) and fine-tuned by our DAT without extra data can get 31.40 mCE on ImageNet-C and 32.77% top-1 accuracy on Stylized-ImageNet, building the new state-of-the-art. The code will be available at //github.com/alibaba/easyrobust.

In the real-world question answering scenarios, hybrid form combining both tabular and textual contents has attracted more and more attention, among which numerical reasoning problem is one of the most typical and challenging problems. Existing methods usually adopt encoder-decoder framework to represent hybrid contents and generate answers. However, it can not capture the rich relationship among numerical value, table schema, and text information on the encoder side. The decoder uses a simple predefined operator classifier which is not flexible enough to handle numerical reasoning processes with diverse expressions. To address these problems, this paper proposes a \textbf{Re}lational \textbf{G}raph enhanced \textbf{H}ybrid table-text \textbf{N}umerical reasoning model with \textbf{T}ree decoder (\textbf{RegHNT}). It models the numerical question answering over table-text hybrid contents as an expression tree generation task. Moreover, we propose a novel relational graph modeling method, which models alignment between questions, tables, and paragraphs. We validated our model on the publicly available table-text hybrid QA benchmark (TAT-QA). The proposed RegHNT significantly outperform the baseline model and achieve state-of-the-art results\footnote{We openly released the source code and data at~\url{//github.com/lfy79001/RegHNT}}~(2022-05-05).

We study the algorithmic problem of optimally covering a tree with $k$ mobile robots. The tree is known to all robots, and our goal is to assign a walk to each robot in such a way that the union of these walks covers the whole tree. We assume that the edges have the same length, and that traveling along an edge takes a unit of time. Two objective functions are considered: the cover time and the cover length. The cover time is the maximum time a robot needs to finish its assigned walk and the cover length is the sum of the lengths of all the walks. We also consider a variant in which the robots must rendezvous periodically at the same vertex in at most a certain number of moves. We show that the problem is different for the two cost functions. For the cover time minimization problem, we prove that the problem is NP-hard when $k$ is part of the input, regardless of whether periodic rendezvous are required or not. For the cover length minimization problem, we show that it can be solved in polynomial time when periodic rendezvous are not required, and it is NP-hard otherwise.

The increasing size of recently proposed Neural Networks makes it hard to implement them on embedded devices, where memory, battery and computational power are a non-trivial bottleneck. For this reason during the last years network compression literature has been thriving and a large number of solutions has been been published to reduce both the number of operations and the parameters involved with the models. Unfortunately, most of these reducing techniques are actually heuristic methods and usually require at least one re-training step to recover the accuracy. The need of procedures for model reduction is well-known also in the fields of Verification and Performances Evaluation, where large efforts have been devoted to the definition of quotients that preserve the observable underlying behaviour. In this paper we try to bridge the gap between the most popular and very effective network reduction strategies and formal notions, such as lumpability, introduced for verification and evaluation of Markov Chains. Elaborating on lumpability we propose a pruning approach that reduces the number of neurons in a network without using any data or fine-tuning, while completely preserving the exact behaviour. Relaxing the constraints on the exact definition of the quotienting method we can give a formal explanation of some of the most common reduction techniques.

In type-and-coeffect systems, contexts are enriched by coeffects modeling how they are actually used, typically through annotations on single variables. Coeffects are computed bottom-up, combining, for each term, the coeffects of its subterms, through a fixed set of algebraic operators. We show that this principled approach can be adopted to track sharing in the imperative paradigm, that is, links among variables possibly introduced by the execution. This provides a significant example of non-structural coeffects, which cannot be computed by-variable, since the way a given variable is used can affect the coeffects of other variables. To illustrate the effectiveness of the approach, we enhance the type system tracking sharing to model a sophisticated set of features related to uniqueness and immutability. Thanks to the coeffect-based approach, we can express such features in a simple way and prove related properties with standard techniques.

Classical results in general equilibrium theory assume divisible goods and convex preferences of market participants. In many real-world markets, participants have non-convex preferences and the allocation problem needs to consider complex constraints. Electricity markets are a prime example. In such markets, Walrasian prices are impossible, and heuristic pricing rules based on the dual of the relaxed allocation problem are used in practice. However, these rules have been criticized for high side-payments and inadequate congestion signals. We show that existing pricing heuristics optimize specific design goals that can be conflicting. The trade-offs can be substantial, and we establish that the design of pricing rules is fundamentally a multi-objective optimization problem addressing different incentives. In addition to traditional multi-objective optimization techniques using weighing of individual objectives, we introduce a novel parameter-free pricing rule that minimizes incentives for market participants to deviate locally. Our findings show how the new pricing rule capitalizes on the upsides of existing pricing rules under scrutiny today. It leads to prices that incur low make-whole payments while providing adequate congestion signals and low lost opportunity costs. Our suggested pricing rule does not require weighing of objectives, it is computationally scalable, and balances trade-offs in a principled manner, addressing an important policy issue in electricity markets.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Image captioning is a challenging task that combines the field of computer vision and natural language processing. A variety of approaches have been proposed to achieve the goal of automatically describing an image, and recurrent neural network (RNN) or long-short term memory (LSTM) based models dominate this field. However, RNNs or LSTMs cannot be calculated in parallel and ignore the underlying hierarchical structure of a sentence. In this paper, we propose a framework that only employs convolutional neural networks (CNNs) to generate captions. Owing to parallel computing, our basic model is around 3 times faster than NIC (an LSTM-based model) during training time, while also providing better results. We conduct extensive experiments on MSCOCO and investigate the influence of the model width and depth. Compared with LSTM-based models that apply similar attention mechanisms, our proposed models achieves comparable scores of BLEU-1,2,3,4 and METEOR, and higher scores of CIDEr. We also test our model on the paragraph annotation dataset, and get higher CIDEr score compared with hierarchical LSTMs

北京阿比特科技有限公司