The growing number of wireless edge devices has magnified challenges concerning energy, bandwidth, latency, and data heterogeneity. These challenges have become bottlenecks for distributed learning. To address these issues, this paper presents a novel approach that ensures energy efficiency for distributionally robust federated learning (FL) with over air computation (AirComp). In this context, to effectively balance robustness with energy efficiency, we introduce a novel client selection method that integrates two complementary insights: a deterministic one that is designed for energy efficiency, and a probabilistic one designed for distributional robustness. Simulation results underscore the efficacy of the proposed algorithm, revealing its superior performance compared to baselines from both robustness and energy efficiency perspectives, achieving more than 3-fold energy savings compared to the considered baselines.
Recently text-to-image models have gained widespread attention in the community due to their controllable and high-quality generation ability. However, the robustness of such models and their potential ethical issues have not been fully explored. In this paper, we introduce Universal Semantic Trigger, a meaningless token sequence that can be added at any location within the input text yet can induce generated images towards a preset semantic target.To thoroughly investigate it, we propose Semantic Gradient-based Search (SGS) framework. SGS automatically discovers the potential universal semantic triggers based on the given semantic targets. Furthermore, we design evaluation metrics to comprehensively evaluate semantic shift of images caused by these triggers. And our empirical analyses reveal that the mainstream open-source text-to-image models are vulnerable to our triggers, which could pose significant ethical threats. Our work contributes to a further understanding of text-to-image synthesis and helps users to automatically auditing their models before deployment.
As deep neural networks (DNNs) grow in complexity and size, the resultant increase in communication overhead during distributed training has become a significant bottleneck, challenging the scalability of distributed training systems. Existing solutions, while aiming to mitigate this bottleneck through worker-level compression and in-network aggregation, fall short due to their inability to efficiently reconcile the trade-offs between compression effectiveness and computational overhead, hindering overall performance and scalability. In this paper, we introduce a novel compression algorithm that effectively merges worker-level compression with in-network aggregation. Our solution is both homomorphic, allowing for efficient in-network aggregation without CPU/GPU processing, and lossless, ensuring no compromise on training accuracy. Theoretically optimal in compression and computational efficiency, our approach is empirically validated across diverse DNN models such as NCF, LSTM, VGG19, and BERT-base, showing up to a 6.33$\times$ improvement in aggregation throughput and a 3.74$\times$ increase in per-iteration training speed.
Adaptivity, reconfigurability and intelligence are key features of the next-generation wireless networks to meet the increasingly diverse quality of service (QoS) requirements of the future applications. Conventional protocol designs, however, struggle to provide flexibility and agility to changing radio environments, traffic types and different user service requirements. In this paper, we explore the potential of deep reinforcement learning (DRL), in particular Proximal Policy Optimization (PPO), to design and configure intelligent and application-specific medium access control (MAC) protocols. We propose a framework that enables the addition, removal, or modification of protocol features to meet individual application needs. The DRL channel access policy design empowers the protocol to adapt and optimize in accordance with the network and radio environment. Through extensive simulations, we demonstrate the superior performance of the learned protocols over legacy IEEE 802.11ac in terms of throughput and latency.
Autonomous robot navigation within the dynamic unknown environment is of crucial significance for mobile robotic applications including robot navigation in last-mile delivery and robot-enabled automated supplies in industrial and hospital delivery applications. Current solutions still suffer from limitations, such as the robot cannot recognize unknown objects in real time and cannot navigate freely in a dynamic, narrow, and complex environment. We propose a complete software framework for autonomous robot perception and navigation within very dense obstacles and dense human crowds. First, we propose a framework that accurately detects and segments open-world object categories in a zero-shot manner, which overcomes the over-segmentation limitation of the current SAM model. Second, we proposed the distillation strategy to distill the knowledge to segment the free space of the walkway for robot navigation without the label. In the meantime, we design the trimming strategy that works collaboratively with distillation to enable lightweight inference to deploy the neural network on edge devices such as NVIDIA-TX2 or Xavier NX during autonomous navigation. Integrated into the robot navigation system, extensive experiments demonstrate that our proposed framework has achieved superior performance in terms of both accuracy and efficiency in robot scene perception and autonomous robot navigation.
Network telemetry based on data models is expected to become the standard mechanism for collecting operational data from network devices efficiently. But the wide variety of standard and proprietary data models along with the different implementations of telemetry protocols offered by network vendors, become a barrier when monitoring heterogeneous network infrastructures. To facilitate the integration and sharing of context information related to model-driven telemetry, this work proposes a semantic network inventory that integrates new information models specifically developed to capture context information in a vendor-agnostic fashion using current standards defined for context management. To automate the integration of this context information within the network inventory, a reference architecture is designed. Finally, a prototype of the solution is implemented and validated through a case study that illustrates how the network inventory can ease the operation of model-driven telemetry in multi-vendor networks.
The wide adoption of multimedia service capable mobile devices, the availability of better networks with higher bandwidths, and the availability of platforms offering digital content has led to an increasing popularity of multimedia streaming services. However, multimedia streaming services can be subject to different factors that affect the quality perceived by the users, such as service interruptions or quality oscillations due to changing network conditions, particularly in mobile networks. Dynamic Adaptive Streaming over HTTP (DASH), leverages the use of content-distribution networks and the capabilities of the multimedia devices to allow multimedia players to dynamically adapt the quality of the media streaming to the available bandwidth and the device characteristics. While many elements of DASH are standardized, the algorithms providing the dynamic adaptation of the streaming are not. The adaptation is often based on the estimation of the throughput or a buffer control mechanism. In this paper, we present a new throughput estimation adaptation algorithm based on a statistical method named Adaptive Forgetting Factor (AFF). Using this method, the adaptation logic is able to react appropriately to the different conditions of different types of networks. A set of experiments with different traffic profiles show that the proposed algorithm improves video quality performance in both wired and wireless environments.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.