Intensive longitudinal biomarker data are increasingly common in scientific studies that seek temporally granular understanding of the role of behavioral and physiological factors in relation to outcomes of interest. Intensive longitudinal biomarker data, such as those obtained from wearable devices, are often obtained at a high frequency typically resulting in several hundred to thousand observations per individual measured over minutes, hours, or days. Often in longitudinal studies, the primary focus is on relating the means of biomarker trajectories to an outcome, and the variances are treated as nuisance parameters, although they may also be informative for the outcomes. In this paper, we propose a Bayesian hierarchical model to jointly model a cross-sectional outcome and the intensive longitudinal biomarkers. To model the variability of biomarkers and deal with the high intensity of data, we develop subject-level cubic B-splines and allow the sharing of information across individuals for both the residual variability and the random effects variability. Then different levels of variability are extracted and incorporated into an outcome submodel for inferential and predictive purposes. We demonstrate the utility of the proposed model via an application involving bio-monitoring of hertz-level heart rate information from a study on social stress.
As deep neural networks are more commonly deployed in high-stakes domains, their black-box nature makes uncertainty quantification challenging. We investigate the effects of presenting conformal prediction sets -- a distribution-free class of methods for generating prediction sets with specified coverage -- to express uncertainty in AI-advised decision-making. Through a large online experiment, we compare the utility of conformal prediction sets to displays of Top-$1$ and Top-$k$ predictions for AI-advised image labeling. In a pre-registered analysis, we find that the utility of prediction sets for accuracy varies with the difficulty of the task: while they result in accuracy on par with or less than Top-$1$ and Top-$k$ displays for easy images, prediction sets excel at assisting humans in labeling out-of-distribution (OOD) images, especially when the set size is small. Our results empirically pinpoint practical challenges of conformal prediction sets and provide implications on how to incorporate them for real-world decision-making.
Model editing aims to precisely modify the behaviours of large language models (LLMs) on specific knowledge while keeping irrelevant knowledge unchanged. It has been proven effective in resolving hallucination and out-of-date issues in LLMs. As a result, it can boost the application of LLMs in many critical domains (e.g., medical domain), where the hallucination is not tolerable. In this paper, we propose two model editing studies and validate them in the medical domain: (1) directly editing the factual medical knowledge and (2) editing the explanations to facts. Meanwhile, we observed that current model editing methods struggle with the specialization and complexity of medical knowledge. Therefore, we propose MedLaSA, a novel Layer-wise Scalable Adapter strategy for medical model editing. It employs causal tracing to identify the precise location of knowledge in neurons and then introduces scalable adapters into the dense layers of LLMs. These adapters are assigned scaling values based on the corresponding specific knowledge. To evaluate the editing impact, we build two benchmark datasets and introduce a series of challenging and comprehensive metrics. Extensive experiments on medical LLMs demonstrate the editing efficiency of MedLaSA, without affecting irrelevant knowledge that is not edited.
Objective: For transradial amputees, robotic prosthetic hands promise to regain the capability to perform daily living activities. Current control methods based on physiological signals such as electromyography (EMG) are prone to yielding poor inference outcomes due to motion artifacts, muscle fatigue, and many more. Vision sensors are a major source of information about the environment state and can play a vital role in inferring feasible and intended gestures. However, visual evidence is also susceptible to its own artifacts, most often due to object occlusion, lighting changes, etc. Multimodal evidence fusion using physiological and vision sensor measurements is a natural approach due to the complementary strengths of these modalities. Methods: In this paper, we present a Bayesian evidence fusion framework for grasp intent inference using eye-view video, eye-gaze, and EMG from the forearm processed by neural network models. We analyze individual and fused performance as a function of time as the hand approaches the object to grasp it. For this purpose, we have also developed novel data processing and augmentation techniques to train neural network components. Results: Our results indicate that, on average, fusion improves the instantaneous upcoming grasp type classification accuracy while in the reaching phase by 13.66% and 14.8%, relative to EMG (81.64% non-fused) and visual evidence (80.5% non-fused) individually, resulting in an overall fusion accuracy of 95.3%. Conclusion: Our experimental data analyses demonstrate that EMG and visual evidence show complementary strengths, and as a consequence, fusion of multimodal evidence can outperform each individual evidence modality at any given time.
Humans and animals can recognize latent structures in their environment and apply this information to efficiently navigate the world. Several recent works argue that the brain supports these abilities by forming neural representations that encode such latent structures in flexible, generalizable ways. However, it remains unclear what aspects of neural population activity are contributing to these computational capabilities. Here, we develop an analytical theory linking the mesoscopic statistics of a neural population's activity to generalization performance on a multi-task learning problem. To do this, we rely on a generative model in which different tasks depend on a common, unobserved latent structure and predictions are formed from a linear readout of a neural population's activity. We show that three geometric measures of the population activity determine generalization performance in these settings. Using this theory, we find that experimentally observed factorized (or disentangled) representations naturally emerge as an optimal solution to the multi-task learning problem. We go on to show that when data is scarce, optimal codes compress less informative latent variables, and when data is abundant, optimal codes expand this information in the state space. We validate predictions from our theory using biological and artificial neural network data. Our results therefore tie neural population geometry to the multi-task learning problem and make normative predictions of the structure of population activity in these settings.
The concept of Quality of Life (QoL) refers to a holistic measurement of an individual's well-being, incorporating psychological and social aspects. Pregnant women, especially those with obesity and stress, often experience lower QoL. Physical activity (PA) has shown the potential to enhance the QoL. However, pregnant women who are overweight and obese rarely meet the recommended level of PA. Studies have investigated the relationship between PA and QoL during pregnancy using correlation-based approaches. These methods aim to discover spurious correlations between variables rather than causal relationships. Besides, the existing methods mainly rely on physical activity parameters and neglect the use of different factors such as maternal (medical) history and context data, leading to biased estimates. Furthermore, the estimations lack an understanding of mediators and counterfactual scenarios that might affect them. In this paper, we investigate the causal relationship between being physically active (treatment variable) and the QoL (outcome) during pregnancy and postpartum. To estimate the causal effect, we develop a Causal Machine Learning method, integrating causal discovery and causal inference components. The data for our investigation is derived from a long-term wearable-based health monitoring study focusing on overweight and obese pregnant women. The machine learning (meta-learner) estimation technique is used to estimate the causal effect. Our result shows that performing adequate physical activity during pregnancy and postpartum improves the QoL by units of 7.3 and 3.4 on average in physical health and psychological domains, respectively. In the final step, four refutation analysis techniques are employed to validate our estimation.
Many measures of human-robot trust have proliferated across the HRI research literature because each attempts to capture the factors that impact trust despite its many dimensions. None of the previous trust measures, however, address the systems of inequity and structures of power present in HRI research or attempt to counteract the systematic biases and potential harms caused by HRI systems. This position paper proposes a participatory and social justice-oriented approach for the design and evaluation of a trust measure. This proposed process would iteratively co-design the trust measure with the community for whom the HRI system is being created. The process would prioritize that community's needs and unique circumstances to produce a trust measure that accurately reflects the factors that impact their trust in a robot.
We investigate both the theoretical and algorithmic aspects of likelihood-based methods for recovering a complex-valued signal from multiple sets of measurements, referred to as looks, affected by speckle (multiplicative) noise. Our theoretical contributions include establishing the first existing theoretical upper bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis. Our theoretical results capture the dependence of MSE upon the number of parameters in the deep image prior, the number of looks, the signal dimension, and the number of measurements per look. On the algorithmic side, we introduce the concept of bagged Deep Image Priors (Bagged-DIP) and integrate them with projected gradient descent. Furthermore, we show how employing Newton-Schulz algorithm for calculating matrix inverses within the iterations of PGD reduces the computational complexity of the algorithm. We will show that this method achieves the state-of-the-art performance.
Traditional rigid endoscopes have challenges in flexibly treating tumors located deep in the brain, and low operability and fixed viewing angles limit its development. This study introduces a novel dual-segment flexible robotic endoscope MicroNeuro, designed to perform biopsies with dexterous surgical manipulation deep in the brain. Taking into account the uncertainty of the control model, an image-based visual servoing with online robot Jacobian estimation has been implemented to enhance motion accuracy. Furthermore, the application of model predictive control with constraints significantly bolsters the flexible robot's ability to adaptively track mobile objects and resist external interference. Experimental results underscore that the proposed control system enhances motion stability and precision. Phantom testing substantiates its considerable potential for deployment in neurosurgery.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.