亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study universal deepfake detection. Our goal is to detect synthetic images from a range of generative AI approaches, particularly from emerging ones which are unseen during training of the deepfake detector. Universal deepfake detection requires outstanding generalization capability. Motivated by recently proposed masked image modeling which has demonstrated excellent generalization in self-supervised pre-training, we make the first attempt to explore masked image modeling for universal deepfake detection. We study spatial and frequency domain masking in training deepfake detectors. Based on empirical analysis, we propose a novel deepfake detector via frequency masking. Our focus on frequency domain is different from the majority, which primarily target spatial domain detection. Our comparative analyses reveal substantial performance gains over existing methods. Code and models are publicly available.

相關內容

We study parametric inference for ergodic diffusion processes with a degenerate diffusion matrix. Existing research focuses on a particular class of hypo-elliptic SDEs, with components split into `rough'/`smooth' and noise from rough components propagating directly onto smooth ones, but some critical model classes arising in applications have yet to be explored. We aim to cover this gap, thus analyse the highly degenerate class of SDEs, where components split into further sub-groups. Such models include e.g. the notable case of generalised Langevin equations. We propose a tailored time-discretisation scheme and provide asymptotic results supporting our scheme in the context of high-frequency, full observations. The proposed discretisation scheme is applicable in much more general data regimes and is shown to overcome biases via simulation studies also in the practical case when only a smooth component is observed. Joint consideration of our study for highly degenerate SDEs and existing research provides a general `recipe' for the development of time-discretisation schemes to be used within statistical methods for general classes of hypo-elliptic SDEs.

This paper tackles the challenge of teaching code semantics to Large Language Models (LLMs) for program analysis by incorporating code symmetries into the model architecture. We introduce a group-theoretic framework that defines code symmetries as semantics-preserving transformations, where forming a code symmetry group enables precise and efficient reasoning of code semantics. Our solution, SymC, develops a novel variant of self-attention that is provably equivariant to code symmetries from the permutation group defined over the program dependence graph. SymC obtains superior performance on five program analysis tasks, outperforming state-of-the-art code models, including GPT-4, without any pre-training. Our results suggest that code LLMs that encode the code structural prior via the code symmetry group generalize better and faster.

We propose a new method for cloth digitalization. Deviating from existing methods which learn from data captured under relatively casual settings, we propose to learn from data captured in strictly tested measuring protocols, and find plausible physical parameters of the cloths. However, such data is currently absent, so we first propose a new dataset with accurate cloth measurements. Further, the data size is considerably smaller than the ones in current deep learning, due to the nature of the data capture process. To learn from small data, we propose a new Bayesian differentiable cloth model to estimate the complex material heterogeneity of real cloths. It can provide highly accurate digitalization from very limited data samples. Through exhaustive evaluation and comparison, we show our method is accurate in cloth digitalization, efficient in learning from limited data samples, and general in capturing material variations. Code and data are available //github.com/realcrane/Bayesian-Differentiable-Physics-for-Cloth-Digitalization

We study Dorfman's classical group testing protocol in a novel setting where individual specimen statuses are modeled as exchangeable random variables. We are motivated by infectious disease screening. In that case, specimens which arrive together for testing often originate from the same community and so their statuses may exhibit positive correlation. Dorfman's protocol screens a population of n specimens for a binary trait by partitioning it into non-overlapping groups, testing these, and only individually retesting the specimens of each positive group. The partition is chosen to minimize the expected number of tests under a probabilistic model of specimen statuses. We relax the typical assumption that these are independent and identically distributed and instead model them as exchangeable random variables. In this case, their joint distribution is symmetric in the sense that it is invariant under permutations. We give a characterization of such distributions in terms of a function q where q(h) is the marginal probability that any group of size h tests negative. We use this interpretable representation to show that the set partitioning problem arising in Dorfman's protocol can be reduced to an integer partitioning problem and efficiently solved. We apply these tools to an empirical dataset from the COVID-19 pandemic. The methodology helps explain the unexpectedly high empirical efficiency reported by the original investigators.

Weak coin flipping is an important cryptographic primitive -- it is the strongest known secure two-party computation primitive that classically becomes secure only under certain assumptions (e.g. computational hardness), while quantumly there exist protocols that achieve arbitrarily close to perfect security. This breakthrough result was established by Mochon in 2007 [arXiv:0711.4114]. However, his proof relied on the existence of certain unitary operators which was established by a non-constructive argument. Consequently, explicit protocols have remained elusive. In this work, we give exact constructions of related unitary operators. These, together with a new formalism, yield a family of protocols approaching perfect security thereby also simplifying Mochon's proof of existence. We illustrate the construction of explicit weak coin flipping protocols by considering concrete examples (from the aforementioned family of protocols) that are more secure than all previously known protocols.

Mitigating biases in machine learning models has gained increasing attention in Natural Language Processing (NLP). Yet, only a few studies focus on fair text embeddings, which are crucial yet challenging for real-world applications. In this paper, we propose a novel method for learning fair text embeddings. We achieve fairness while maintaining utility trade-off by ensuring conditional independence between sensitive attributes and text embeddings conditioned on the content. Specifically, we enforce that embeddings of texts with different sensitive attributes but identical content maintain the same distance toward the embedding of their corresponding neutral text. Furthermore, we address the issue of lacking proper training data by using Large Language Models (LLMs) to augment texts into different sensitive groups. Our extensive evaluations demonstrate that our approach effectively improves fairness while preserving the utility of embeddings, representing a pioneering effort in achieving conditional independence for fair text embeddings.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司