亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inspired by cognitive theories, we introduce AnyHome, a framework that translates any text into well-structured and textured indoor scenes at a house-scale. By prompting Large Language Models (LLMs) with designed templates, our approach converts provided textual narratives into amodal structured representations. These representations guarantee consistent and realistic spatial layouts by directing the synthesis of a geometry mesh within defined constraints. A Score Distillation Sampling process is then employed to refine the geometry, followed by an egocentric inpainting process that adds lifelike textures to it. AnyHome stands out with its editability, customizability, diversity, and realism. The structured representations for scenes allow for extensive editing at varying levels of granularity. Capable of interpreting texts ranging from simple labels to detailed narratives, AnyHome generates detailed geometries and textures that outperform existing methods in both quantitative and qualitative measures.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

To address the limitations of current hate speech detection models, we introduce \textsf{SGHateCheck}, a novel framework designed for the linguistic and cultural context of Singapore and Southeast Asia. It extends the functional testing approach of HateCheck and MHC, employing large language models for translation and paraphrasing into Singapore's main languages, and refining these with native annotators. \textsf{SGHateCheck} reveals critical flaws in state-of-the-art models, highlighting their inadequacy in sensitive content moderation. This work aims to foster the development of more effective hate speech detection tools for diverse linguistic environments, particularly for Singapore and Southeast Asia contexts.

Corruption is notoriously widespread in data collection. Despite extensive research, the existing literature on corruption predominantly focuses on specific settings and learning scenarios, lacking a unified view. There is still a limited understanding of how to effectively model and mitigate corruption in machine learning problems. In this work, we develop a general theory of corruption from an information-theoretic perspective - with Markov kernels as a foundational mathematical tool. We generalize the definition of corruption beyond the concept of distributional shift: corruption includes all modifications of a learning problem, including changes in model class and loss function. We will focus here on changes in probability distributions. First, we construct a provably exhaustive framework for pairwise Markovian corruptions. The framework not only allows us to study corruption types based on their input space, but also serves to unify prior works on specific corruption models and establish a consistent nomenclature. Second, we systematically analyze the consequences of corruption on learning tasks by comparing Bayes risks in the clean and corrupted scenarios. This examination sheds light on complexities arising from joint and dependent corruptions on both labels and attributes. Notably, while label corruptions affect only the loss function, more intricate cases involving attribute corruptions extend the influence beyond the loss to affect the hypothesis class. Third, building upon these results, we investigate mitigations for various corruption types. We expand the existing loss-correction results for label corruption, and identify the necessity to generalize the classical corruption-corrected learning framework to a new paradigm with weaker requirements. Within the latter setting, we provide a negative result for loss correction in the attribute and the joint corruption case.

When querying a large language model (LLM), the context, i.e. personal, demographic, and cultural information specific to an end-user, can significantly shape the response of the LLM. For example, asking the model to explain Newton's second law with the context "I am a toddler" yields a different answer compared to the context "I am a physics professor." Proper usage of the context enables the LLM to generate personalized responses, whereas inappropriate contextual influence can lead to stereotypical and potentially harmful generations (e.g. associating "female" with "housekeeper"). In practice, striking the right balance when leveraging context is a nuanced and challenging problem that is often situation-dependent. One common approach to address this challenge is to fine-tune LLMs on contextually appropriate responses. However, this approach is expensive, time-consuming, and not controllable for end-users in different situations. In this work, we propose Context Steering (CoS) - a simple training-free method that can be easily applied to autoregressive LLMs at inference time. By measuring the contextual influence in terms of token prediction likelihood and modulating it, our method enables practitioners to determine the appropriate level of contextual influence based on their specific use case and end-user base. We showcase a variety of applications of CoS including amplifying the contextual influence to achieve better personalization and mitigating unwanted influence for reducing model bias. In addition, we show that we can combine CoS with Bayesian Inference to quantify the extent of hate speech on the internet. We demonstrate the effectiveness of CoS on state-of-the-art LLMs and benchmarks.

Varied approaches for aligning language models have been proposed, including supervised fine-tuning, RLHF, and direct optimization methods such as DPO. Although DPO has rapidly gained popularity due to its straightforward training process and competitive results, there is an open question of whether there remain practical advantages of using a discriminator, like a reward model, to evaluate responses. We propose D2PO, discriminator-guided DPO, an approach for the online setting where preferences are being collected throughout learning. As we collect gold preferences, we use these not only to train our policy, but to train a discriminative response evaluation model to silver-label even more synthetic data for policy training. We explore this approach across a set of diverse tasks, including a realistic chat setting, we find that our approach leads to higher-quality outputs compared to DPO with the same data budget, and greater efficiency in terms of preference data requirements. Furthermore, we show conditions under which silver labeling is most helpful: it is most effective when training the policy with DPO, outperforming traditional PPO, and benefits from maintaining a separate discriminator from the policy model.

Building on the standard theory of process algebra with priorities, we identify a new scheduling mechanism, called "constructive reduction" which is designed to capture the essence of synchronous programming. The distinctive property of this evaluation strategy is to achieve determinacy-by-construction for multi-cast concurrent communication with shared memory. In the technical setting of CCS extended by clocks and priorities, we prove for a large class of "coherent" processes a confluence property for constructive reductions. We show that under some restrictions, called "pivotability", coherence is preserved by the operators of prefix, summation, parallel composition, restriction and hiding. Since this permits memory and sharing, we are able to cover a strictly larger class of processes compared to those in Milner's classical confluence theory for CCS without priorities.

We introduce a new regression framework designed to deal with large-scale, complex data that lies around a low-dimensional manifold with noises. Our approach first constructs a graph representation, referred to as the skeleton, to capture the underlying geometric structure. We then define metrics on the skeleton graph and apply nonparametric regression techniques, along with feature transformations based on the graph, to estimate the regression function. We also discuss the limitations of some nonparametric regressors with respect to the general metric space such as the skeleton graph. The proposed regression framework suggests a novel way to deal with data with underlying geometric structures and provides additional advantages in handling the union of multiple manifolds, additive noises, and noisy observations. We provide statistical guarantees for the proposed method and demonstrate its effectiveness through simulations and real data examples.

For long document summarization, discourse structure is important to discern the key content of the text and the differences in importance level between sentences. Unfortunately, the integration of rhetorical structure theory (RST) into parameter-efficient fine-tuning strategies for long document summarization remains unexplored. Therefore, this paper introduces RST-LoRA and proposes four RST-aware variants to explicitly incorporate RST into the LoRA model. Our empirical evaluation demonstrates that incorporating the type and uncertainty of rhetorical relations can complementarily enhance the performance of LoRA in summarization tasks. Furthermore, the best-performing variant we introduced outperforms the vanilla LoRA and full-parameter fine-tuning models, as confirmed by multiple automatic and human evaluations, and even surpasses previous state-of-the-art methods.

We introduce Multivariate Multiscale Graph-based Dispersion Entropy (mvDEG), a novel, computationally efficient method for analyzing multivariate time series data in graph and complex network frameworks, and demonstrate its application in real-world data. mvDEG effectively combines temporal dynamics with topological relationships, offering enhanced analysis compared to traditional nonlinear entropy methods. Its efficacy is established through testing on synthetic signals, such as uncorrelated and correlated noise, showcasing its adeptness in discerning various levels of dependency and complexity. The robustness of mvDEG is further validated with real-world datasets, effectively differentiating various two-phase flow regimes and capturing distinct dynamics in weather data analysis. An important advancement of mvDEG is its computational efficiency. Our optimized algorithm displays a computational time that grows linearly with the number of vertices or nodes, in contrast to the exponential growth observed in classical methods. This efficiency is achieved through refined matrix power calculations that exploit matrix and Kronecker product properties, making our method faster than the state of the art. The significant acceleration in computational time positions mvDEG as a transformative tool for extensive and real-time applications, setting a new benchmark in the analysis of time series recorded at distributed locations and opening avenues for innovative applications.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司