The prevalence of ubiquitous location-aware devices and mobile Internet enables us to collect massive individual-level trajectory dataset from users. Such trajectory big data bring new opportunities to human mobility research but also raise public concerns with regard to location privacy. In this work, we present the Conditional Adversarial Trajectory Synthesis (CATS), a deep-learning-based GeoAI methodological framework for privacy-preserving trajectory data generation and publication. CATS applies K-anonymity to the underlying spatiotemporal distributions of human movements, which provides a distributional-level strong privacy guarantee. By leveraging conditional adversarial training on K-anonymized human mobility matrices, trajectory global context learning using the attention-based mechanism, and recurrent bipartite graph matching of adjacent trajectory points, CATS is able to reconstruct trajectory topology from conditionally sampled locations and generate high-quality individual-level synthetic trajectory data, which can serve as supplements or alternatives to raw data for privacy-preserving trajectory data publication. The experiment results on over 90k GPS trajectories show that our method has a better performance in privacy preservation, spatiotemporal characteristic preservation, and downstream utility compared with baseline methods, which brings new insights into privacy-preserving human mobility research using generative AI techniques and explores data ethics issues in GIScience.
Our research investigates the recommendation of code examples to aid software developers, a practice that saves developers significant time by providing ready-to-use code snippets. The focus of our study is Stack Overflow, a commonly used resource for coding discussions and solutions, particularly in the context of the Java programming language. We applied BERT, a powerful Large Language Model (LLM) that enables us to transform code examples into numerical vectors by extracting their semantic information. Once these numerical representations are prepared, we identify Approximate Nearest Neighbors (ANN) using Locality-Sensitive Hashing (LSH). Our research employed two variants of LSH: Random Hyperplane-based LSH and Query-Aware LSH. We rigorously compared these two approaches across four parameters: HitRate, Mean Reciprocal Rank (MRR), Average Execution Time, and Relevance. Our study revealed that the Query-Aware (QA) approach showed superior performance over the Random Hyperplane-based (RH) method. Specifically, it exhibited a notable improvement of 20\% to 35\% in HitRate for query pairs compared to the RH approach. Furthermore, the QA approach proved significantly more time-efficient, with its speed in creating hashing tables and assigning data samples to buckets being at least four times faster. It can return code examples within milliseconds, whereas the RH approach typically requires several seconds to recommend code examples. Due to the superior performance of the QA approach, we tested it against PostFinder and FaCoY, the state-of-the-art baselines. Our QA method showed comparable efficiency proving its potential for effective code recommendation.
The rapid digitization of real-world data offers an unprecedented opportunity for optimizing healthcare delivery and accelerating biomedical discovery. In practice, however, such data is most abundantly available in unstructured forms, such as clinical notes in electronic medical records (EMRs), and it is generally plagued by confounders. In this paper, we present TRIALSCOPE, a unifying framework for distilling real-world evidence from population-level observational data. TRIALSCOPE leverages biomedical language models to structure clinical text at scale, employs advanced probabilistic modeling for denoising and imputation, and incorporates state-of-the-art causal inference techniques to combat common confounders. Using clinical trial specification as generic representation, TRIALSCOPE provides a turn-key solution to generate and reason with clinical hypotheses using observational data. In extensive experiments and analyses on a large-scale real-world dataset with over one million cancer patients from a large US healthcare network, we show that TRIALSCOPE can produce high-quality structuring of real-world data and generates comparable results to marquee cancer trials. In addition to facilitating in-silicon clinical trial design and optimization, TRIALSCOPE may be used to empower synthetic controls, pragmatic trials, post-market surveillance, as well as support fine-grained patient-like-me reasoning in precision diagnosis and treatment.
Recent evaluations of Large Language Models (LLMs) have centered around testing their zero-shot/few-shot capabilities for basic natural language tasks and their ability to translate instructions into tool APIs. However, the evaluation of LLMs utilizing complex tools to finish multi-turn, multi-modal instructions in a complex multi-modal environment has not been investigated. To address this gap, we introduce the PowerPoint Task Completion (PPTC) benchmark to assess LLMs' ability to create and edit PPT files based on user instructions. It contains 279 multi-turn sessions covering diverse topics and hundreds of instructions involving multi-modal operations. We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence, thus it supports various LLM-generated API sequences. We measure 3 closed LLMs and 6 open-source LLMs. The results show that GPT-4 outperforms other LLMs with 75.1\% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6\% session accuracy. We find three main error causes in our benchmark: error accumulation in the multi-turn session, long PPT template processing, and multi-modality perception. These pose great challenges for future LLM and agent systems. We release the data, code, and evaluation system of PPTC at \url{//github.com/gydpku/PPTC}.
Multimodal counterfactual reasoning is a vital yet challenging ability for AI systems. It involves predicting the outcomes of hypothetical circumstances based on vision and language inputs, which enables AI models to learn from failures and explore hypothetical scenarios. Despite its importance, there are only a few datasets targeting the counterfactual reasoning abilities of multimodal models. Among them, they only cover reasoning over synthetic environments or specific types of events (e.g. traffic collisions), making them hard to reliably benchmark the model generalization ability in diverse real-world scenarios and reasoning dimensions. To overcome these limitations, we develop a video question answering dataset, ACQUIRED: it consists of 3.9K annotated videos, encompassing a wide range of event types and incorporating both first and third-person viewpoints, which ensures a focus on real-world diversity. In addition, each video is annotated with questions that span three distinct dimensions of reasoning, including physical, social, and temporal, which can comprehensively evaluate the model counterfactual abilities along multiple aspects. We benchmark our dataset against several state-of-the-art language-only and multimodal models and experimental results demonstrate a significant performance gap (>13%) between models and humans. The findings suggest that multimodal counterfactual reasoning remains an open challenge and ACQUIRED is a comprehensive and reliable benchmark for inspiring future research in this direction.
The cold-start problem is a common challenge for most recommender systems. With extremely limited interactions of cold-start users, conventional recommender models often struggle to generate embeddings with sufficient expressivity. Moreover, the absence of auxiliary content information of users exacerbates the presence of challenges, rendering most cold-start methods difficult to apply. To address this issue, our motivation is based on the observation that if a model can generate expressive embeddings for existing users with relatively more interactions, who were also initially cold-start users, then we can establish a mapping from few initial interactions to expressive embeddings, simulating the process of generating embeddings for cold-start users. Based on this motivation, we propose a Variational Mapping approach for cold-start user Recommendation (VM-Rec). Firstly, we generate a personalized mapping function for cold-start users based on their initial interactions, and parameters of the function are generated from a variational distribution. For the sake of interpretability and computational efficiency, we model the personalized mapping function as a sparse linear model, where each parameter indicates the association to a specific existing user. Consequently, we use this mapping function to map the embeddings of existing users to an embedding of the cold-start user in the same space. The resulting embedding has similar expressivity to that of existing users and can be directly integrated into a pre-trained recommender model to predict click through rates or ranking scores. We evaluate our method based on three widely used recommender models as pre-trained base recommender models, outperforming four popular cold-start methods on two datasets under the same base model.
Large language models such as GPT-3 have demonstrated an impressive capability to adapt to new tasks without requiring task-specific training data. This capability has been particularly effective in settings such as narrative question answering, where the diversity of tasks is immense, but the available supervision data is small. In this work, we investigate if such language models can extend their zero-shot reasoning abilities to long multimodal narratives in multimedia content such as drama, movies, and animation, where the story plays an essential role. We propose Long Story Short, a framework for narrative video QA that first summarizes the narrative of the video to a short plot and then searches parts of the video relevant to the question. We also propose to enhance visual matching with CLIPCheck. Our model outperforms state-of-the-art supervised models by a large margin, highlighting the potential of zero-shot QA for long videos.
Billions of secure messaging users have adopted end-to-end encryption (E2EE). Nevertheless, challenges remain. Most communication applications do not provide E2EE, and application silos prevent interoperability. Our qualitative analysis of privacy-conscious users' discussions of E2EE on Reddit reveals concerns about trusting client applications with plaintext, lack of clear indicators about how encryption works, high cost to switch apps, and concerns that most apps are not open source. We propose InfoGuard, a system enabling E2EE for user-to-user communication in any application. InfoGuard allows users to trigger encryption on any textbox, even if the application does not support E2EE. InfoGuard encrypts text before it reaches the application, eliminating the client app's access to plaintext. InfoGuard also incorporates visible encryption to make it easier for users to understand that their data is being encrypted and give them greater confidence in the system's security. The design enables fine-grained encryption, allowing specific sensitive data items to be encrypted while the rest remains visible to the server. Participants in our user study found InfoGuard usable and trustworthy, expressing a willingness to adopt it.
Robotic collectives for military and disaster response applications require coalition formation algorithms to partition robots into appropriate task teams. Collectives' missions will often incorporate tasks that require multiple high-level robot behaviors or services, which coalition formation must accommodate. The highly dynamic and unstructured application domains also necessitate that coalition formation algorithms produce near optimal solutions (i.e., >95% utility) in near real-time (i.e., <5 minutes) with very large collectives (i.e., hundreds of robots). No previous coalition formation algorithm satisfies these requirements. An initial evaluation found that traditional auction-based algorithms' runtimes are too long, even though the centralized simulator incorporated ideal conditions unlikely to occur in real-world deployments (i.e., synchronization across robots and perfect, instantaneous communication). The hedonic game-based GRAPE algorithm can produce solutions in near real-time, but cannot be applied to multiple service collectives. This manuscript integrates GRAPE and a services model, producing GRAPE-S and Pair-GRAPE-S. These algorithms and two auction baselines were evaluated using a centralized simulator with up to 1000 robots, and via the largest distributed coalition formation simulated evaluation to date, with up to 500 robots. The evaluations demonstrate that auctions transfer poorly to distributed collectives, resulting in excessive runtimes and low utility solutions. GRAPE-S satisfies the target domains' coalition formation requirements, producing near optimal solutions in near real-time, and Pair-GRAPE-S more than satisfies the domain requirements, producing optimal solutions in near real-time. GRAPE-S and Pair-GRAPE-S are the first algorithms demonstrated to support near real-time coalition formation for very large, distributed collectives with multiple services.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Point cloud-based large scale place recognition is fundamental for many applications like Simultaneous Localization and Mapping (SLAM). Although many models have been proposed and have achieved good performance by learning short-range local features, long-range contextual properties have often been neglected. Moreover, the model size has also become a bottleneck for their wide applications. To overcome these challenges, we propose a super light-weight network model termed SVT-Net for large scale place recognition. Specifically, on top of the highly efficient 3D Sparse Convolution (SP-Conv), an Atom-based Sparse Voxel Transformer (ASVT) and a Cluster-based Sparse Voxel Transformer (CSVT) are proposed to learn both short-range local features and long-range contextual features in this model. Consisting of ASVT and CSVT, SVT-Net can achieve state-of-the-art on benchmark datasets in terms of both accuracy and speed with a super-light model size (0.9M). Meanwhile, two simplified versions of SVT-Net are introduced, which also achieve state-of-the-art and further reduce the model size to 0.8M and 0.4M respectively.