亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the increased use of machine learning systems for decision making, questions about the fairness properties of such systems start to take center stage. Most existing work on algorithmic fairness assume complete observation of features at prediction time, as is the case for popular notions like statistical parity and equal opportunity. However, this is not sufficient for models that can make predictions with partial observation as we could miss patterns of bias and incorrectly certify a model to be fair. To address this, a recently introduced notion of fairness asks whether the model exhibits any discrimination pattern, in which an individual characterized by (partial) feature observations, receives vastly different decisions merely by disclosing one or more sensitive attributes such as gender and race. By explicitly accounting for partial observations, this provides a much more fine-grained notion of fairness. In this paper, we propose an algorithm to search for discrimination patterns in a general class of probabilistic models, namely probabilistic circuits. Previously, such algorithms were limited to naive Bayes classifiers which make strong independence assumptions; by contrast, probabilistic circuits provide a unifying framework for a wide range of tractable probabilistic models and can even be compiled from certain classes of Bayesian networks and probabilistic programs, making our method much more broadly applicable. Furthermore, for an unfair model, it may be useful to quickly find discrimination patterns and distill them for better interpretability. As such, we also propose a sampling-based approach to more efficiently mine discrimination patterns, and introduce new classes of patterns such as minimal, maximal, and Pareto optimal patterns that can effectively summarize exponentially many discrimination patterns

相關內容

Contrastively trained encoders have recently been proven to invert the data-generating process: they encode each input, e.g., an image, into the true latent vector that generated the image (Zimmermann et al., 2021). However, real-world observations often have inherent ambiguities. For instance, images may be blurred or only show a 2D view of a 3D object, so multiple latents could have generated them. This makes the true posterior for the latent vector probabilistic with heteroscedastic uncertainty. In this setup, we extend the common InfoNCE objective and encoders to predict latent distributions instead of points. We prove that these distributions recover the correct posteriors of the data-generating process, including its level of aleatoric uncertainty, up to a rotation of the latent space. In addition to providing calibrated uncertainty estimates, these posteriors allow the computation of credible intervals in image retrieval. They comprise images with the same latent as a given query, subject to its uncertainty.

Two new distributions are proposed: the circular projected and the spherical projected Cauchy distributions. A special case of the circular projected Cauchy coincides with the wrapped Cauchy distribution, and for this, a generalization is suggested that offers better fit via the inclusion of an extra parameter. For the spherical case, by imposing two conditions on the scatter matrix we end up with an elliptically symmetric distribution. All distributions allow for a closed-form normalizing constant and straightforward random values generation, while their parameters can be estimated via maximum likelihood. The bias of the estimated parameters is assessed via numerical studies, while exhibitions using real data compare them further to some existing models indicating better fits.

We consider the problem of episodic reinforcement learning where there are multiple stakeholders with different reward functions. Our goal is to output a policy that is socially fair with respect to different reward functions. Prior works have proposed different objectives that a fair policy must optimize including minimum welfare, and generalized Gini welfare. We first take an axiomatic view of the problem, and propose four axioms that any such fair objective must satisfy. We show that the Nash social welfare is the unique objective that uniquely satisfies all four objectives, whereas prior objectives fail to satisfy all four axioms. We then consider the learning version of the problem where the underlying model i.e. Markov decision process is unknown. We consider the problem of minimizing regret with respect to the fair policies maximizing three different fair objectives -- minimum welfare, generalized Gini welfare, and Nash social welfare. Based on optimistic planning, we propose a generic learning algorithm and derive its regret bound with respect to the three different policies. For the objective of Nash social welfare, we also derive a lower bound in regret that grows exponentially with $n$, the number of agents. Finally, we show that for the objective of minimum welfare, one can improve regret by a factor of $O(H)$ for a weaker notion of regret.

As AI-based decision systems proliferate, their successful operationalization requires balancing multiple desiderata: predictive performance, disparity across groups, safeguarding sensitive group attributes (e.g., race), and engineering cost. We present a holistic framework for evaluating and contextualizing fairness interventions with respect to the above desiderata. The two key points of practical consideration are where (pre-, in-, post-processing) and how (in what way the sensitive group data is used) the intervention is introduced. We demonstrate our framework using a thorough benchmarking study on predictive parity; we study close to 400 methodological variations across two major model types (XGBoost vs. Neural Net) and ten datasets. Methodological insights derived from our empirical study inform the practical design of ML workflow with fairness as a central concern. We find predictive parity is difficult to achieve without using group data, and despite requiring group data during model training (but not inference), distributionally robust methods provide significant Pareto improvement. Moreover, a plain XGBoost model often Pareto-dominates neural networks with fairness interventions, highlighting the importance of model inductive bias.

With continuous outcomes, the average causal effect is typically defined using a contrast of expected potential outcomes. However, in the presence of skewed outcome data, the expectation may no longer be meaningful. In practice the typical approach is to either "ignore or transform" - ignore the skewness altogether or transform the outcome to obtain a more symmetric distribution, although neither approach is entirely satisfactory. Alternatively the causal effect can be redefined as a contrast of median potential outcomes, yet discussion of confounding-adjustment methods to estimate this parameter is limited. In this study we described and compared confounding-adjustment methods to address this gap. The methods considered were multivariable quantile regression, an inverse probability weighted (IPW) estimator, weighted quantile regression and two little-known implementations of g-computation for this problem. Motivated by a cohort investigation in the Longitudinal Study of Australian Children, we conducted a simulation study that found the IPW estimator, weighted quantile regression and g-computation implementations minimised bias when the relevant models were correctly specified, with g-computation additionally minimising the variance. These methods provide appealing alternatives to the common "ignore or transform" approach and multivariable quantile regression, enhancing our capability to obtain meaningful causal effect estimates with skewed outcome data.

"AI as a Service" (AIaaS) is a rapidly growing market, offering various plug-and-play AI services and tools. AIaaS enables its customers (users) - who may lack the expertise, data, and/or resources to develop their own systems - to easily build and integrate AI capabilities into their applications. Yet, it is known that AI systems can encapsulate biases and inequalities that can have societal impact. This paper argues that the context-sensitive nature of fairness is often incompatible with AIaaS' 'one-size-fits-all' approach, leading to issues and tensions. Specifically, we review and systematise the AIaaS space by proposing a taxonomy of AI services based on the levels of autonomy afforded to the user. We then critically examine the different categories of AIaaS, outlining how these services can lead to biases or be otherwise harmful in the context of end-user applications. In doing so, we seek to draw research attention to the challenges of this emerging area.

The use of data-driven decision support by public agencies is becoming more widespread and already influences the allocation of public resources. This raises ethical concerns, as it has adversely affected minorities and historically discriminated groups. In this paper, we use an approach that combines statistics and data-driven approaches with dynamical modeling to assess long-term fairness effects of labor market interventions. Specifically, we develop and use a model to investigate the impact of decisions caused by a public employment authority that selectively supports job-seekers through targeted help. The selection of who receives what help is based on a data-driven intervention model that estimates an individual's chances of finding a job in a timely manner and rests upon data that describes a population in which skills relevant to the labor market are unevenly distributed between two groups (e.g., males and females). The intervention model has incomplete access to the individual's actual skills and can augment this with knowledge of the individual's group affiliation, thus using a protected attribute to increase predictive accuracy. We assess this intervention model's dynamics -- especially fairness-related issues and trade-offs between different fairness goals -- over time and compare it to an intervention model that does not use group affiliation as a predictive feature. We conclude that in order to quantify the trade-off correctly and to assess the long-term fairness effects of such a system in the real-world, careful modeling of the surrounding labor market is indispensable.

This paper presents a novel mechanism design for multi-item auction settings with uncertain bidders' type distributions. Our proposed approach utilizes nonparametric density estimation to accurately estimate bidders' types from historical bids, and is built upon the Vickrey-Clarke-Groves (VCG) mechanism, ensuring satisfaction of Bayesian incentive compatibility (BIC) and $\delta$-individual rationality (IR). To further enhance the efficiency of our mechanism, we introduce two novel strategies for query reduction: a filtering method that screens potential winners' value regions within the confidence intervals generated by our estimated distribution, and a classification strategy that designates the lower bound of an interval as the estimated type when the length is below a threshold value. Simulation experiments conducted on both small-scale and large-scale data demonstrate that our mechanism consistently outperforms existing methods in terms of revenue maximization and query reduction, particularly in large-scale scenarios. This makes our proposed mechanism a highly desirable and effective option for sellers in the realm of multi-item auctions.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

北京阿比特科技有限公司