亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Intelligent agents have great potential as facilitators of group conversation among older adults. However, little is known about how to design agents for this purpose and user group, especially in terms of agent embodiment. To this end, we conducted a mixed methods study of older adults' reactions to voice and body in a group conversation facilitation agent. Two agent forms with the same underlying artificial intelligence (AI) and voice system were compared: a humanoid robot and a voice assistant. One preliminary study (total n=24) and one experimental study comparing voice and body morphologies (n=36) were conducted with older adults and an experienced human facilitator. Findings revealed that the artificiality of the agent, regardless of its form, was beneficial for the socially uncomfortable task of conversation facilitation. Even so, talkative personality types had a poorer experience with the "bodied" robot version. Design implications and supplementary reactions, especially to agent voice, are also discussed.

相關內容

We are witnessing a rapid increase in real-world autonomous robotic deployments in environments ranging from indoor homes and commercial establishments to large-scale urban areas, with applications ranging from domestic assistance to urban last-mile delivery. The developers of these robots inevitably have to make impactful design decisions to ensure commercial viability, but such decisions have serious real-world consequences. Unfortunately, it is not uncommon for such projects to face intense bouts of social backlash, which can be attributed to a wide variety of causes, ranging from inappropriate technical design choices to transgressions of social norms and lack of community engagement. To better prepare students for the rigors of developing and deploying real-world robotics systems, we developed a Responsible Robotics teaching module, intended to be included in upper-division and graduate-level robotics courses. Our module is structured as a role-playing exercise that aims to equip students with a framework for navigating the conflicting goals of human actors which govern robots in the field. We report on instructor reflections and anonymous survey responses from offering our responsible robotics module in graduate-level and upper-division undergraduate robotics courses at UT Austin. The responses indicate that students gained a deeper understanding of the socio-technical factors of real-world robotics deployments than they might have using self-study methods, and the students proactively suggested that such modules should be more broadly included in CS courses.

We study a class of McKean--Vlasov Stochastic Differential Equations (MV-SDEs) with drifts and diffusions having super-linear growth in measure and space -- the maps have general polynomial form but also satisfy a certain monotonicity condition. The combination of the drift's super-linear growth in measure (by way of a convolution) and the super-linear growth in space and measure of the diffusion coefficient require novel technical elements in order to obtain the main results. We establish wellposedness, propagation of chaos (PoC), and under further assumptions on the model parameters we show an exponential ergodicity property alongside the existence of an invariant distribution. No differentiability or non-degeneracy conditions are required. Further, we present a particle system based Euler-type split-step scheme (SSM) for the simulation of this type of MV-SDEs. The scheme attains, in stepsize, the strong error rate $1/2$ in the non-path-space root-mean-square error metric and we demonstrate the property of mean-square contraction. Our results are illustrated by numerical examples including: estimation of PoC rates across dimensions, preservation of periodic phase-space, and the observation that taming appears to be not a suitable method unless strong dissipativity is present.

In this work, we present a deterministic algorithm for computing the entire weight distribution of polar codes. As the first step, we derive an efficient recursive procedure to compute the weight distribution that arises in successive cancellation decoding of polar codes along any decoding path. This solves the open problem recently posed by Polyanskaya, Davletshin, and Polyanskii. Using this recursive procedure, at code length n, we can compute the weight distribution of any polar cosets in time O(n^2). We show that any polar code can be represented as a disjoint union of such polar cosets; moreover, this representation extends to polar codes with dynamically frozen bits. However, the number of polar cosets in such representation scales exponentially with a parameter introduced herein, which we call the mixing factor. To upper bound the complexity of our algorithm for polar codes being decreasing monomial codes, we study the range of their mixing factors. We prove that among all decreasing monomial codes with rates at most 1/2, self-dual Reed-Muller codes have the largest mixing factors. To further reduce the complexity of our algorithm, we make use of the fact that, as decreasing monomial codes, polar codes have a large automorphism group. That automorphism group includes the block lower-triangular affine group (BLTA), which in turn contains the lower-triangular affine group (LTA). We prove that a subgroup of LTA acts transitively on certain subsets of decreasing monomial codes, thereby drastically reducing the number of polar cosets that we need to evaluate. This complexity reduction makes it possible to compute the weight distribution of polar codes at length n = 128.

Optimization problems involving mixed variables, i.e., variables of numerical and categorical nature, can be challenging to solve, especially in the presence of complex constraints. Moreover, when the objective function is the result of a simulation or experiment, it may be expensive to evaluate. In this paper, we propose a novel surrogate-based global optimization algorithm, called PWAS, based on constructing a piecewise affine surrogate of the objective function over feasible samples. We introduce two types of exploration functions to efficiently search the feasible domain via mixed integer linear programming (MILP) solvers. We also provide a preference-based version of the algorithm, called PWASp, which can be used when only pairwise comparisons between samples can be acquired while the objective function remains unquantified. PWAS and PWASp are tested on mixed-variable benchmark problems with and without constraints. The results show that, within a small number of acquisitions, PWAS and PWASp can often achieve better or comparable results than other existing methods.

Given a boolean predicate $\Pi$ on labeled networks (e.g., proper coloring, leader election, etc.), a self-stabilizing algorithm for $\Pi$ is a distributed algorithm that can start from any initial configuration of the network (i.e., every node has an arbitrary value assigned to each of its variables), and eventually converge to a configuration satisfying $\Pi$. It is known that leader election does not have a deterministic self-stabilizing algorithm using a constant-size register at each node, i.e., for some networks, some of their nodes must have registers whose sizes grow with the size $n$ of the networks. On the other hand, it is also known that leader election can be solved by a deterministic self-stabilizing algorithm using registers of $O(\log \log n)$ bits per node in any $n$-node bounded-degree network. We show that this latter space complexity is optimal. Specifically, we prove that every deterministic self-stabilizing algorithm solving leader election must use $\Omega(\log \log n)$-bit per node registers in some $n$-node networks. In addition, we show that our lower bounds go beyond leader election, and apply to all problems that cannot be solved by anonymous algorithms.

Studies show dramatic increase in elderly population of Western Europe over the next few decades, which will put pressure on healthcare systems. Measures must be taken to meet these social challenges. Healthcare robots investigated to facilitate independent living for elderly. This paper aims to review recent projects in robotics for healthcare from 2008 to 2021. We provide an overview of the focus in this area and a roadmap for upcoming research. Our study was initiated with a literature search using three digital databases. Searches were performed for articles, including research projects containing the words elderly care, assisted aging, health monitoring, or elderly health, and any word including the root word robot. The resulting 20 recent research projects are described and categorized in this paper. Then, these projects were analyzed using thematic analysis. Our findings can be summarized in common themes: most projects have a strong focus on care robots functionalities; robots are often seen as products in care settings; there is an emphasis on robots as commercial products; and there is some limited focus on the design and ethical aspects of care robots. The paper concludes with five key points representing a roadmap for future research addressing robotic for elderly people.

A complete understanding of physical systems requires models that are accurate and obeys natural conservation laws. Recent trends in representation learning involve learning Lagrangian from data rather than the direct discovery of governing equations of motion. The generalization of equation discovery techniques has huge potential; however, existing Lagrangian discovery frameworks are black-box in nature. This raises a concern about the reusability of the discovered Lagrangian. In this article, we propose a novel data-driven machine-learning algorithm to automate the discovery of interpretable Lagrangian from data. The Lagrangian are derived in interpretable forms, which also allows the automated discovery of conservation laws and governing equations of motion. The architecture of the proposed framework is designed in such a way that it allows learning the Lagrangian from a subset of the underlying domain and then generalizing for an infinite-dimensional system. The fidelity of the proposed framework is exemplified using examples described by systems of ordinary differential equations and partial differential equations where the Lagrangian and conserved quantities are known.

Over the past decade, predictive language modeling for code has proven to be a valuable tool for enabling new forms of automation for developers. More recently, we have seen the advent of general purpose "large language models", based on neural transformer architectures, that have been trained on massive datasets of human written text spanning code and natural language. However, despite the demonstrated representational power of such models, interacting with them has historically been constrained to specific task settings, limiting their general applicability. Many of these limitations were recently overcome with the introduction of ChatGPT, a language model created by OpenAI and trained to operate as a conversational agent, enabling it to answer questions and respond to a wide variety of commands from end-users. The introduction of models, such as ChatGPT, has already spurred fervent discussion from educators, ranging from fear that students could use these AI tools to circumvent learning, to excitement about the new types of learning opportunities that they might unlock. However, given the nascent nature of these tools, we currently lack fundamental knowledge related to how well they perform in different educational settings, and the potential promise (or danger) that they might pose to traditional forms of instruction. As such, in this paper, we examine how well ChatGPT performs when tasked with solving common questions in a popular software testing curriculum. Our findings indicate that ChatGPT can provide correct or partially correct answers in 44% of cases, provide correct or partially correct explanations of answers in 57% of cases, and that prompting the tool in a shared question context leads to a marginally higher rate of correct answers. Based on these findings, we discuss the potential promise, and dangers related to the use of ChatGPT by students and instructors.

Collecting high quality conversational data can be very expensive for most applications and infeasible for others due to privacy, ethical, or similar concerns. A promising direction to tackle this problem is to generate synthetic dialogues by prompting large language models. In this work, we use a small set of expert-written conversations as in-context examples to synthesize a social conversation dataset using prompting. We perform several thorough evaluations of our synthetic conversations compared to human-collected conversations. This includes various dimensions of conversation quality with human evaluation directly on the synthesized conversations, and interactive human evaluation of chatbots fine-tuned on the synthetically generated dataset. We additionally demonstrate that this prompting approach is generalizable to multi-party conversations, providing potential to create new synthetic data for multi-party tasks. Our synthetic multi-party conversations were rated more favorably across all measured dimensions compared to conversation excerpts sampled from a human-collected multi-party dataset.

Convergence (virtual) bidding is an important part of two-settlement electric power markets as it can effectively reduce discrepancies between the day-ahead and real-time markets. Consequently, there is extensive research into the bidding strategies of virtual participants aiming to obtain optimal bids to submit to the day-ahead market. In this paper, we introduce a price-based general stochastic optimization framework to obtain optimal convergence bid curves. Within this framework, we develop a computationally tractable linear programming-based optimization model, which produces bid prices and volumes simultaneously. We also show that different approximations and simplifications in the general model lead naturally to state-of-the-art convergence bidding approaches, such as self-scheduling and opportunistic approaches. Our general framework also provides a straightforward way to compare the performance of these models, which is demonstrated by numerical experiments on the California (CAISO) market.

北京阿比特科技有限公司