We train an identity verification architecture and evaluate modifications to the part of the model that combines audio and visual representations, including in scenarios where one input is missing in either of two examples to be compared. We report results on the Voxceleb1-E test set that suggest averaging the output embeddings improves error rate in the full-modality setting and when a single modality is missing, and makes more complete use of the embedding space than systems which use shared layers and discuss possible reasons for this behavior.
We present time vectors, a simple tool to customize language models to new time periods. Time vectors are created by finetuning a language model on data from a single time (e.g., a year or month), and then subtracting the weights of the original pretrained model. This vector specifies a direction in weight space that, as our experiments show, improves performance on text from that time period. Time vectors specialized to adjacent time periods appear to be positioned closer together in a manifold. Using this structure, we interpolate between time vectors to induce new models that perform better on intervening and future time periods, without any additional training. We demonstrate the consistency of our findings across different tasks, domains, model sizes, and time scales. Our results suggest that time is encoded in the weight space of finetuned models.
We present a tool for exploring the design space of shaders using an interactive evolutionary algorithm integrated with the Unity editor, a well-known commercial tool for video game development. Our framework leverages the underlying graph-based representation of recent shader editors and interactive evolution to allow designers to explore several visual options starting from an existing shader. Our framework encodes the graph representation of a current shader as a chromosome used to seed the evolution of a shader population. It applies graph-based recombination and mutation with a set of heuristics to create feasible shaders. The framework is an extension of the Unity editor; thus, designers with little knowledge of evolutionary computation (and shader programming) can interact with the underlying evolutionary engine using the same visual interface used for working on game scenes.
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks. A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form. One typical strategy is algorithm unrolling, which relies on automatic differentiation through the entire chain of operations executed by an iterative optimization solver. This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is asymptotically equivalent to the solution of a linear system by a particular iterative method. Several practical pitfalls of unrolling are demonstrated in light of these insights, and a system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations. Experiments over various end-to-end optimization and learning tasks demonstrate the advantages of this system both computationally, and in terms of flexibility over various optimization problem forms.
Rough set theory is a well-known mathematical framework that can deal with inconsistent data by providing lower and upper approximations of concepts. A prominent property of these approximations is their granular representation: that is, they can be written as unions of simple sets, called granules. The latter can be identified with "if. . . , then. . . " rules, which form the backbone of rough set rule induction. It has been shown previously that this property can be maintained for various fuzzy rough set models, including those based on ordered weighted average (OWA) operators. In this paper, we will focus on some instances of the general class of fuzzy quantifier-based fuzzy rough sets (FQFRS). In these models, the lower and upper approximations are evaluated using binary and unary fuzzy quantifiers, respectively. One of the main targets of this study is to examine the granular representation of different models of FQFRS. The main findings reveal that Choquet-based fuzzy rough sets can be represented granularly under the same conditions as OWA-based fuzzy rough sets, whereas Sugeno-based FRS can always be represented granularly. This observation highlights the potential of these models for resolving data inconsistencies and managing noise.
We present a novel technique for modulating the appearance frequency of a few tokens within a dataset for encoding an invisible watermark that can be used to protect ownership rights upon data. We develop optimal as well as fast heuristic algorithms for creating and verifying such watermarks. We also demonstrate the robustness of our technique against various attacks and derive analytical bounds for the false positive probability of erroneously detecting a watermark on a dataset that does not carry it. Our technique is applicable to both single dimensional and multidimensional datasets, is independent of token type, allows for a fine control of the introduced distortion, and can be used in a variety of use cases that involve buying and selling data in contemporary data marketplaces.
The rapid accumulation of Earth observation data presents a formidable challenge for the processing capabilities of traditional remote sensing desktop software, particularly when it comes to analyzing expansive geographical areas and prolonged temporal sequences. Cloud computing has emerged as a transformative solution, surmounting the barriers traditionally associated with the management and computation of voluminous datasets. This paper introduces the Analytical Insight of Earth (AI Earth), an innovative remote sensing intelligent computing cloud platform, powered by the robust Alibaba Cloud infrastructure. AI Earth provides an extensive collection of publicly available remote sensing datasets, along with a suite of computational tools powered by a high-performance computing engine. Furthermore, it provides a variety of classic deep learning (DL) models and a novel remote sensing large vision segmentation model tailored to different recognition tasks. The platform enables users to upload their unique samples for model training and to deploy third-party models, thereby increasing the accessibility and openness of DL applications. This platform will facilitate researchers in leveraging remote sensing data for large-scale applied research in areas such as resources, environment, ecology, and climate.
Transformer architectures have facilitated the development of large-scale and general-purpose sequence models for prediction tasks in natural language processing and computer vision, e.g., GPT-3 and Swin Transformer. Although originally designed for prediction problems, it is natural to inquire about their suitability for sequential decision-making and reinforcement learning problems, which are typically beset by long-standing issues involving sample efficiency, credit assignment, and partial observability. In recent years, sequence models, especially the Transformer, have attracted increasing interest in the RL communities, spawning numerous approaches with notable effectiveness and generalizability. This survey presents a comprehensive overview of recent works aimed at solving sequential decision-making tasks with sequence models such as the Transformer, by discussing the connection between sequential decision-making and sequence modeling, and categorizing them based on the way they utilize the Transformer. Moreover, this paper puts forth various potential avenues for future research intending to improve the effectiveness of large sequence models for sequential decision-making, encompassing theoretical foundations, network architectures, algorithms, and efficient training systems. As this article has been accepted by the Frontiers of Computer Science, here is an early version, and the most up-to-date version can be found at //journal.hep.com.cn/fcs/EN/10.1007/s11704-023-2689-5
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.