This paper addresses the problem of detecting time series outliers, focusing on systems with repetitive behavior, such as industrial robots operating on production lines.Notable challenges arise from the fact that a task performed multiple times may exhibit different duration in each repetition and that the time series reported by the sensors are irregularly sampled because of data gaps. The anomaly detection approach presented in this paper consists of three stages.The first stage identifies the repetitive cycles in the lengthy time series and segments them into individual time series corresponding to one task cycle, while accounting for possible temporal distortions.The second stage computes a prototype for the cycles using a GPU-based barycenter algorithm, specifically tailored for very large time series.The third stage uses the prototype to detect abnormal cycles by computing an anomaly score for each cycle.The overall approach, named WarpEd Time Series ANomaly Detection (WETSAND), makes use of the Dynamic Time Warping algorithm and its variants because they are suited to the distorted nature of the time series.The experiments show that \wetsand scales to large signals, computes human-friendly prototypes, works with very little data, and outperforms some general purpose anomaly detection approaches such as autoencoders.
Estimating causal effects in e-commerce tends to involve costly treatment assignments which can be impractical in large-scale settings. Leveraging machine learning to predict such treatment effects without actual intervention is a standard practice to diminish the risk. However, existing methods for treatment effect prediction tend to rely on training sets of substantial size, which are built from real experiments and are thus inherently risky to create. In this work we propose a graph neural network to diminish the required training set size, relying on graphs that are common in e-commerce data. Specifically, we view the problem as node regression with a restricted number of labeled instances, develop a two-model neural architecture akin to previous causal effect estimators, and test varying message-passing layers for encoding. Furthermore, as an extra step, we combine the model with an acquisition function to guide the creation of the training set in settings with extremely low experimental budget. The framework is flexible since each step can be used separately with other models or treatment policies. The experiments on real large-scale networks indicate a clear advantage of our methodology over the state of the art, which in many cases performs close to random, underlining the need for models that can generalize with limited supervision to reduce experimental risks.
The deployment of ever-larger machine learning models reflects a growing consensus that the more expressive the model class one optimizes over$\unicode{x2013}$and the more data one has access to$\unicode{x2013}$the more one can improve performance. As models get deployed in a variety of real-world scenarios, they inevitably face strategic environments. In this work, we consider the natural question of how the interplay of models and strategic interactions affects the relationship between performance at equilibrium and the expressivity of model classes. We find that strategic interactions can break the conventional view$\unicode{x2013}$meaning that performance does not necessarily monotonically improve as model classes get larger or more expressive (even with infinite data). We show the implications of this result in several contexts including strategic regression, strategic classification, and multi-agent reinforcement learning. In particular, we show that each of these settings admits a Braess' paradox-like phenomenon in which optimizing over less expressive model classes allows one to achieve strictly better equilibrium outcomes. Motivated by these examples, we then propose a new paradigm for model selection in games wherein an agent seeks to choose amongst different model classes to use as their action set in a game.
Contrary to traditional deterministic notions of algorithmic fairness, this paper argues that fairly allocating scarce resources using machine learning often requires randomness. We address why, when, and how to randomize by proposing stochastic procedures that more adequately account for all of the claims that individuals have to allocations of social goods or opportunities.
Widely employed in cognitive psychology, Gestalt theory elucidates basic principles in visual perception, but meanwhile presents significant challenges for computation. The advancement of artificial intelligence requires the emulation of human cognitive behavior, for which Gestalt theory serves as a fundamental framework describing human visual cognitive behavior. In this paper, we utilize persistent homology, a mathematical tool in computational topology, to develop a computational model for Gestalt theory, addressing the challenges of quantification and computation. The Gestalt computational model not only holds promise for applications in artificial intelligence and computer vision, but also opens a new research direction of computational visual perception.
This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.
Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.
Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.