亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Occlusion is a common issue in 3D reconstruction from RGB-D videos, often blocking the complete reconstruction of objects and presenting an ongoing problem. In this paper, we propose a novel framework, empowered by a 2D diffusion-based in-painting model, to reconstruct complete surfaces for the hidden parts of objects. Specifically, we utilize a pre-trained diffusion model to fill in the hidden areas of 2D images. Then we use these in-painted images to optimize a neural implicit surface representation for each instance for 3D reconstruction. Since creating the in-painting masks needed for this process is tricky, we adopt a human-in-the-loop strategy that involves very little human engagement to generate high-quality masks. Moreover, some parts of objects can be totally hidden because the videos are usually shot from limited perspectives. To ensure recovering these invisible areas, we develop a cascaded network architecture for predicting signed distance field, making use of different frequency bands of positional encoding and maintaining overall smoothness. Besides the commonly used rendering loss, Eikonal loss, and silhouette loss, we adopt a CLIP-based semantic consistency loss to guide the surface from unseen camera angles. Experiments on ScanNet scenes show that our proposed framework achieves state-of-the-art accuracy and completeness in object-level reconstruction from scene-level RGB-D videos.

相關內容

在計算機視覺中, 三維重建是指根據單視圖或者多視圖的圖像重建三維信息的過程. 由于單視頻的信息不完全,因此三維重建需要利用經驗知識. 而多視圖的三維重建(類似人的雙目定位)相對比較容易, 其方法是先對攝像機進行標定, 即計算出攝像機的圖象坐標系與世界坐標系的關系.然后利用多個二維圖象中的信息重建出三維信息。 物體三維重建是計算機輔助幾何設計(CAGD)、計算機圖形學(CG)、計算機動畫、計算機視覺、醫學圖像處理、科學計算和虛擬現實、數字媒體創作等領域的共性科學問題和核心技術。在計算機內生成物體三維表示主要有兩類方法。一類是使用幾何建模軟件通過人機交互生成人為控制下的物體三維幾何模型,另一類是通過一定的手段獲取真實物體的幾何形狀。前者實現技術已經十分成熟,現有若干軟件支持,比如:3DMAX、Maya、AutoCAD、UG等等,它們一般使用具有數學表達式的曲線曲面表示幾何形狀。后者一般稱為三維重建過程,三維重建是指利用二維投影恢復物體三維信息(形狀等)的數學過程和計算機技術,包括數據獲取、預處理、點云拼接和特征分析等步驟。

Multi-sensor modal fusion has demonstrated strong advantages in 3D object detection tasks. However, existing methods that fuse multi-modal features require transforming features into the bird's eye view space and may lose certain information on Z-axis, thus leading to inferior performance. To this end, we propose a novel end-to-end multi-modal fusion transformer-based framework, dubbed FusionFormer, that incorporates deformable attention and residual structures within the fusion encoding module. Specifically, by developing a uniform sampling strategy, our method can easily sample from 2D image and 3D voxel features spontaneously, thus exploiting flexible adaptability and avoiding explicit transformation to the bird's eye view space during the feature concatenation process. We further implement a residual structure in our feature encoder to ensure the model's robustness in case of missing an input modality. Through extensive experiments on a popular autonomous driving benchmark dataset, nuScenes, our method achieves state-of-the-art single model performance of 72.6% mAP and 75.1% NDS in the 3D object detection task without test time augmentation.

Text-to-image generation is a significant domain in modern computer vision and has achieved substantial improvements through the evolution of generative architectures. Among these, there are diffusion-based models that have demonstrated essential quality enhancements. These models are generally split into two categories: pixel-level and latent-level approaches. We present Kandinsky1, a novel exploration of latent diffusion architecture, combining the principles of the image prior models with latent diffusion techniques. The image prior model is trained separately to map text embeddings to image embeddings of CLIP. Another distinct feature of the proposed model is the modified MoVQ implementation, which serves as the image autoencoder component. Overall, the designed model contains 3.3B parameters. We also deployed a user-friendly demo system that supports diverse generative modes such as text-to-image generation, image fusion, text and image fusion, image variations generation, and text-guided inpainting/outpainting. Additionally, we released the source code and checkpoints for the Kandinsky models. Experimental evaluations demonstrate a FID score of 8.03 on the COCO-30K dataset, marking our model as the top open-source performer in terms of measurable image generation quality.

In an era dominated by digital interactions, phishing campaigns have evolved to exploit not just technological vulnerabilities but also human traits. This study takes an unprecedented deep dive into large-scale phishing campaigns aimed at Meta's users, offering a dual perspective on the technical mechanics and human elements involved. Analysing data from over 25,000 victims worldwide, we highlight the nuances of these campaigns, from the intricate techniques deployed by the attackers to the sentiments and behaviours of those who were targeted. Unlike prior research conducted in controlled environments, this investigation capitalises on the vast, diverse, and genuine data extracted directly from active phishing campaigns, allowing for a more holistic understanding of the drivers, facilitators, and human factors. Through the application of advanced computational techniques, including natural language processing and machine learning, this work unveils critical insights into the psyche of victims and the evolving tactics of modern phishers. Our analysis illustrates very poor password selection choices from the victims but also persistence in the revictimisation of a significant part of the users. Finally, we reveal many correlations regarding demographics, timing, sentiment, emotion, and tone of the victims' responses.

Increasing the context length of large language models (LLMs) unlocks fundamentally new capabilities, but also significantly increases the memory footprints of training. Previous model-parallel systems such as Megatron-LM partition and compute different attention heads in parallel, resulting in large communication volumes, so they cannot scale beyond the number of attention heads, thereby hindering its adoption. In this paper, we introduce a new approach, LightSeq, for long-context LLMs training. LightSeq has many notable advantages. First, LightSeq partitions over the sequence dimension, hence is agnostic to model architectures and readily applicable for models with varying numbers of attention heads, such as Multi-Head, Multi-Query and Grouped-Query attention. Second, LightSeq not only requires up to 4.7x less communication than Megatron-LM on popular LLMs but also overlaps the communication with computation. To further reduce the training time, LightSeq features a novel gradient checkpointing scheme to bypass an forward computation for memory-efficient attention. We evaluate LightSeq on Llama-7B and its variants with sequence lengths from 32K to 512K. Through comprehensive experiments on single and cross-node training, we show that LightSeq achieves up to 1.24-2.01x end-to-end speedup, and a 2-8x longer sequence length on models with fewer heads, compared to Megatron-LM. Codes will be available at //github.com/RulinShao/LightSeq.

A comprehensive picture of three Bethe-Kikuchi variational principles including their relationship to belief propagation (BP) algorithms on hypergraphs is given. The structure of BP equations is generalized to define continuous-time diffusions, solving localized versions of the max-entropy principle (A), the variational free energy principle (B), and a less usual equilibrium free energy principle (C), Legendre dual to A. Both critical points of Bethe-Kikuchi functionals and stationary beliefs are shown to lie at the non-linear intersection of two constraint surfaces, enforcing energy conservation and marginal consistency respectively. The hypersurface of singular beliefs, accross which equilibria become unstable as the constraint surfaces meet tangentially, is described by polynomial equations in the convex polytope of consistent beliefs. This polynomial is expressed by a loop series expansion for graphs of binary variables.

We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data, such as irregular samples, missing data, or unaligned measurements from multiple sensors. Our method relies on a continuous-time-dependent model of the series' evolution dynamics. It leverages adaptations of conditional, implicit neural representations for sequential data. A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows for long-term predictions. The model provides a highly flexible and unified framework for imputation and forecasting tasks across a wide range of challenging scenarios. It achieves state-of-the-art performance on classical benchmarks and outperforms alternative time-continuous models.

Although pervasive spread of misinformation on social media platforms has become a pressing challenge, existing platform interventions have shown limited success in curbing its dissemination. In this study, we propose a stance-aware graph neural network (stance-aware GNN) that leverages users' stances to proactively predict misinformation spread. As different user stances can form unique echo chambers, we customize four information passing paths in stance-aware GNN, while the trainable attention weights provide explainability by highlighting each structure's importance. Evaluated on a real-world dataset, stance-aware GNN outperforms benchmarks by 32.65% and exceeds advanced GNNs without user stance by over 4.69%. Furthermore, the attention weights indicate that users' opposition stances have a higher impact on their neighbors' behaviors than supportive ones, which function as social correction to halt misinformation propagation. Overall, our study provides an effective predictive model for platforms to combat misinformation, and highlights the impact of user stances in the misinformation propagation.

The video-language (VL) pretraining has achieved remarkable improvement in multiple downstream tasks. However, the current VL pretraining framework is hard to extend to multiple modalities (N modalities, N>=3) beyond vision and language. We thus propose LanguageBind, taking the language as the bind across different modalities because the language modality is well-explored and contains rich semantics. Specifically, we freeze the language encoder acquired by VL pretraining, then train encoders for other modalities with contrastive learning. As a result, all modalities are mapped to a shared feature space, implementing multi-modal semantic alignment. While LanguageBind ensures that we can extend VL modalities to N modalities, we also need a high-quality dataset with alignment data pairs centered on language. We thus propose VIDAL-10M with Video, Infrared, Depth, Audio and their corresponding Language, naming as VIDAL-10M. In our VIDAL-10M, all videos are from short video platforms with complete semantics rather than truncated segments from long videos, and all the video, depth, infrared, and audio modalities are aligned to their textual descriptions. After pretraining on VIDAL-10M, we outperform ImageBind by 1.2% R@1 on the MSR-VTT dataset with only 15% of the parameters in the zero-shot video-text retrieval, validating the high quality of our dataset. Beyond this, our LanguageBind has achieved great improvement in the zero-shot video, audio, depth, and infrared understanding tasks. For instance, on the LLVIP and NYU-D datasets, LanguageBind outperforms ImageBind-huge with 23.8% and 11.1% top-1 accuracy. Code address: //github.com/PKU-YuanGroup/LanguageBind.

Text-to-image generative models based on latent diffusion models (LDM) have demonstrated their outstanding ability in generating high-quality and high-resolution images according to language prompt. Based on these powerful latent diffusion models, various fine-tuning methods have been proposed to achieve the personalization of text-to-image diffusion models such as artistic style adaptation and human face transfer. However, the unauthorized usage of data for model personalization has emerged as a prevalent concern in relation to copyright violations. For example, a malicious user may use the fine-tuning technique to generate images which mimic the style of a painter without his/her permission. In light of this concern, we have proposed FT-Shield, a watermarking approach specifically designed for the fine-tuning of text-to-image diffusion models to aid in detecting instances of infringement. We develop a novel algorithm for the generation of the watermark to ensure that the watermark on the training images can be quickly and accurately transferred to the generated images of text-to-image diffusion models. A watermark will be detected on an image by a binary watermark detector if the image is generated by a model that has been fine-tuned using the protected watermarked images. Comprehensive experiments were conducted to validate the effectiveness of FT-Shield.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

北京阿比特科技有限公司