亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Various studies among side-channel attacks have tried to extract information through leakages from electronic devices to reach the instruction flow of some appliances. However, previous methods highly depend on the resolution of traced data. Obtaining low-noise traces is not always feasible in real attack scenarios. This study proposes two deep models to extract low and high-level features from side-channel traces and classify them to related instructions. We aim to evaluate the accuracy of a side-channel attack on low-resolution data with a more robust feature extractor thanks to neural networks. As inves-tigated, instruction flow in real programs is predictable and follows specific distributions. This leads to proposing a LSTM model to estimate these distributions, which could expedite the reverse engineering process and also raise the accuracy. The proposed model for leakage classification reaches 54.58% accuracy on average and outperforms other existing methods on our datasets. Also, LSTM model reaches 94.39% accuracy for instruction prediction on standard implementation of cryptographic algorithms.

相關內容

機(ji)器(qi)學習系統設計系統評估標準

Recent studies have shown that autoencoder-based models can achieve superior performance on anomaly detection tasks due to their excellent ability to fit complex data in an unsupervised manner. In this work, we propose a novel autoencoder-based model, named StackVAE-G that can significantly bring the efficiency and interpretability to multivariate time series anomaly detection. Specifically, we utilize the similarities across the time series channels by the stacking block-wise reconstruction with a weight-sharing scheme to reduce the size of learned models and also relieve the overfitting to unknown noises in the training data. We also leverage a graph learning module to learn a sparse adjacency matrix to explicitly capture the stable interrelation structure among multiple time series channels for the interpretable pattern reconstruction of interrelated channels. Combining these two modules, we introduce the stacking block-wise VAE (variational autoencoder) with GNN (graph neural network) model for multivariate time series anomaly detection. We conduct extensive experiments on three commonly used public datasets, showing that our model achieves comparable (even better) performance with the state-of-the-art modelsand meanwhile requires much less computation and memory cost. Furthermore, we demonstrate that the adjacency matrix learned by our model accurately captures the interrelation among multiple channels, and can provide valuable information for failure diagnosis applications.

\cite{rohe2016co} proposed Stochastic co-Blockmodel (ScBM) as a tool for detecting community structure of binary directed graph data in network studies. However, ScBM completely ignores node weight, and is unable to explain the block structure of directed weighted network which appears in various areas, such as biology, sociology, physiology and computer science. Here, to model directed weighted network, we introduce a Directed Distribution-Free model by releasing ScBM's distribution restriction. We also build an extension of the proposed model by considering variation of node degree. Our models do not require a specific distribution on generating elements of adjacency matrix but only a block structure on the expected adjacency matrix. Spectral algorithms with theoretical guarantee on consistent estimation of node label are presented to identify communities. Our proposed methods are illustrated by simulated and empirical examples.

The quality of generalized linear models (GLMs), frequently used by insurance companies, depends on the choice of interacting variables. The search for interactions is time-consuming, especially for data sets with a large number of variables, depends much on expert judgement of actuaries, and often relies on visual performance indicators. Therefore, we present an approach to automating the process of finding interactions that should be added to GLMs to improve their predictive power. Our approach relies on neural networks and a model-specific interaction detection method, which is computationally faster than the traditionally used methods like Friedman H-Statistic or SHAP values. In numerical studies, we provide the results of our approach on different data sets: open-source data, artificial data, and proprietary data.

This article aims to study intrusion attacks and then develop a novel cyberattack detection framework for blockchain networks. Specifically, we first design and implement a blockchain network in our laboratory. This blockchain network will serve two purposes, i.e., generate the real traffic data (including both normal data and attack data) for our learning models and implement real-time experiments to evaluate the performance of our proposed intrusion detection framework. To the best of our knowledge, this is the first dataset that is synthesized in a laboratory for cyberattacks in a blockchain network. We then propose a novel collaborative learning model that allows efficient deployment in the blockchain network to detect attacks. The main idea of the proposed learning model is to enable blockchain nodes to actively collect data, share the knowledge learned from its data, and then exchange the knowledge with other blockchain nodes in the network. In this way, we can not only leverage the knowledge from all the nodes in the network but also do not need to gather all raw data for training at a centralized node like conventional centralized learning solutions. Such a framework can also avoid the risk of exposing local data's privacy as well as the excessive network overhead/congestion. Both intensive simulations and real-time experiments clearly show that our proposed collaborative learning-based intrusion detection framework can achieve an accuracy of up to 97.7% in detecting attacks.

Time series classification is an important problem in real world. Due to its non-stationary property that the distribution changes over time, it remains challenging to build models for generalization to unseen distributions. In this paper, we propose to view the time series classification problem from the distribution perspective. We argue that the temporal complexity attributes to the unknown latent distributions within. To this end, we propose DIVERSIFY to learn generalized representations for time series classification. DIVERSIFY takes an iterative process: it first obtains the worst-case distribution scenario via adversarial training, then matches the distributions of the obtained sub-domains. We also present some theoretical insights. We conduct experiments on gesture recognition, speech commands recognition, wearable stress and affect detection, and sensor-based human activity recognition with a total of seven datasets in different settings. Results demonstrate that DIVERSIFY significantly outperforms other baselines and effectively characterizes the latent distributions by qualitative and quantitative analysis.

Noisy labels in large E-commerce product data (i.e., product items are placed into incorrect categories) are a critical issue for product categorization task because they are unavoidable, non-trivial to remove and degrade prediction performance significantly. Training a product title classification model which is robust to noisy labels in the data is very important to make product classification applications more practical. In this paper, we study the impact of instance-dependent noise to performance of product title classification by comparing our data denoising algorithm and different noise-resistance training algorithms which were designed to prevent a classifier model from over-fitting to noise. We develop a simple yet effective Deep Neural Network for product title classification to use as a base classifier. Along with recent methods of stimulating instance-dependent noise, we propose a novel noise stimulation algorithm based on product title similarity. Our experiments cover multiple datasets, various noise methods and different training solutions. Results uncover the limit of classification task when noise rate is not negligible and data distribution is highly skewed.

Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

Machine Learning has been the quintessential solution for many AI problems, but learning is still heavily dependent on the specific training data. Some learning models can be incorporated with a prior knowledge in the Bayesian set up, but these learning models do not have the ability to access any organised world knowledge on demand. In this work, we propose to enhance learning models with world knowledge in the form of Knowledge Graph (KG) fact triples for Natural Language Processing (NLP) tasks. Our aim is to develop a deep learning model that can extract relevant prior support facts from knowledge graphs depending on the task using attention mechanism. We introduce a convolution-based model for learning representations of knowledge graph entity and relation clusters in order to reduce the attention space. We show that the proposed method is highly scalable to the amount of prior information that has to be processed and can be applied to any generic NLP task. Using this method we show significant improvement in performance for text classification with News20, DBPedia datasets and natural language inference with Stanford Natural Language Inference (SNLI) dataset. We also demonstrate that a deep learning model can be trained well with substantially less amount of labeled training data, when it has access to organised world knowledge in the form of knowledge graph.

Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .

北京阿比特科技有限公司