With the impressive achievements of chatGPT and Sora, generative artificial intelligence (GAI) has received increasing attention. Not limited to the field of content generation, GAI is also widely used to solve the problems in wireless communication scenarios due to its powerful learning and generalization capabilities. Therefore, we discuss key applications of GAI in improving unmanned aerial vehicle (UAV) communication and networking performance in this article. Specifically, we first review the key technologies of GAI and the important roles of UAV networking. Then, we show how GAI can improve the communication, networking, and security performances of UAV systems. Subsequently, we propose a novel framework of GAI for advanced UAV networking, and then present a case study of UAV-enabled spectrum map estimation and transmission rate optimization based on the proposed framework to verify the effectiveness of GAI-enabled UAV systems. Finally, we discuss some important open directions.
3D Gaussian splatting (3DGS) has recently demonstrated impressive capabilities in real-time novel view synthesis and 3D reconstruction. However, 3DGS heavily depends on the accurate initialization derived from Structure-from-Motion (SfM) methods. When the quality of the initial point cloud deteriorates, such as in the presence of noise or when using randomly initialized point cloud, 3DGS often undergoes large performance drops. To address this limitation, we propose a novel optimization strategy dubbed RAIN-GS (Relaing Accurate Initialization Constraint for 3D Gaussian Splatting). Our approach is based on an in-depth analysis of the original 3DGS optimization scheme and the analysis of the SfM initialization in the frequency domain. Leveraging simple modifications based on our analyses, RAIN-GS successfully trains 3D Gaussians from sub-optimal point cloud (e.g., randomly initialized point cloud), effectively relaxing the need for accurate initialization. We demonstrate the efficacy of our strategy through quantitative and qualitative comparisons on multiple datasets, where RAIN-GS trained with random point cloud achieves performance on-par with or even better than 3DGS trained with accurate SfM point cloud. Our project page and code can be found at //ku-cvlab.github.io/RAIN-GS.
Personalized Federated Learning (PFL) is proposed to find the greatest personalized models for each client. To avoid the central failure and communication bottleneck in the server-based FL, we concentrate on the Decentralized Personalized Federated Learning (DPFL) that performs distributed model training in a Peer-to-Peer (P2P) manner. Most personalized works in DPFL are based on undirected and symmetric topologies, however, the data, computation and communication resources heterogeneity result in large variances in the personalized models, which lead the undirected aggregation to suboptimal personalized performance and unguaranteed convergence. To address these issues, we propose a directed collaboration DPFL framework by incorporating stochastic gradient push and partial model personalized, called \textbf{D}ecentralized \textbf{Fed}erated \textbf{P}artial \textbf{G}radient \textbf{P}ush (\textbf{DFedPGP}). It personalizes the linear classifier in the modern deep model to customize the local solution and learns a consensus representation in a fully decentralized manner. Clients only share gradients with a subset of neighbors based on the directed and asymmetric topologies, which guarantees flexible choices for resource efficiency and better convergence. Theoretically, we show that the proposed DFedPGP achieves a superior convergence rate of $\mathcal{O}(\frac{1}{\sqrt{T}})$ in the general non-convex setting, and prove the tighter connectivity among clients will speed up the convergence. The proposed method achieves state-of-the-art (SOTA) accuracy in both data and computation heterogeneity scenarios, demonstrating the efficiency of the directed collaboration and partial gradient push.
Large language models (LLMs) have achieved impressive linguistic capabilities. However, a key limitation persists in their lack of human-like memory faculties. LLMs exhibit constrained memory retention across sequential interactions, hindering complex reasoning. This paper explores the potential of applying cognitive psychology's working memory frameworks, to enhance LLM architecture. The limitations of traditional LLM memory designs are analyzed, including their isolation of distinct dialog episodes and lack of persistent memory links. To address this, an innovative model is proposed incorporating a centralized Working Memory Hub and Episodic Buffer access to retain memories across episodes. This architecture aims to provide greater continuity for nuanced contextual reasoning during intricate tasks and collaborative scenarios. While promising, further research is required into optimizing episodic memory encoding, storage, prioritization, retrieval, and security. Overall, this paper provides a strategic blueprint for developing LLM agents with more sophisticated, human-like memory capabilities, highlighting memory mechanisms as a vital frontier in artificial general intelligence.
The sequential recommender (SR) system is a crucial component of modern recommender systems, as it aims to capture the evolving preferences of users. Significant efforts have been made to enhance the capabilities of SR systems. These methods typically follow the \textbf{model-centric} paradigm, which involves developing effective models based on fixed datasets. However, this approach often overlooks potential quality issues and flaws inherent in the data. Driven by the potential of \textbf{data-centric} AI, we propose a novel data-centric paradigm for developing an ideal training dataset using a model-agnostic dataset regeneration framework called DR4SR. This framework enables the regeneration of a dataset with exceptional cross-architecture generalizability. Additionally, we introduce the DR4SR+ framework, which incorporates a model-aware dataset personalizer to tailor the regenerated dataset specifically for a target model. To demonstrate the effectiveness of the data-centric paradigm, we integrate our framework with various model-centric methods and observe significant performance improvements across four widely adopted datasets. Furthermore, we conduct in-depth analyses to explore the potential of the data-centric paradigm and provide valuable insights. The code can be found at \textcolor{blue}{\url{//anonymous.4open.science/r/KDD2024-86EA/}}
The success of artificial intelligence (AI), and deep learning models in particular, has led to their widespread adoption across various industries due to their ability to process huge amounts of data and learn complex patterns. However, due to their lack of explainability, there are significant concerns regarding their use in critical sectors, such as finance and healthcare, where decision-making transparency is of paramount importance. In this paper, we provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance. We categorize the collection of explainable AI methods according to their corresponding characteristics, and we review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.