亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Phishing attacks are a growing cybersecurity threat, leveraging deceptive techniques to steal sensitive information through malicious websites. To combat these attacks, this paper introduces PhishGuard, an optimal custom ensemble model designed to improve phishing site detection. The model combines multiple machine learning classifiers, including Random Forest, Gradient Boosting, CatBoost, and XGBoost, to enhance detection accuracy. Through advanced feature selection methods such as SelectKBest and RFECV, and optimizations like hyperparameter tuning and data balancing, the model was trained and evaluated on four publicly available datasets. PhishGuard outperformed state-of-the-art models, achieving a detection accuracy of 99.05% on one of the datasets, with similarly high results across other datasets. This research demonstrates that optimization methods in conjunction with ensemble learning greatly improve phishing detection performance.

相關內容

Despite existing 3D cloth simulators producing realistic results, they predominantly operate on discrete surface representations (e.g. points and meshes) with a fixed spatial resolution, which often leads to large memory consumption and resolution-dependent simulations. Moreover, back-propagating gradients through the existing solvers is difficult, and they cannot be easily integrated into modern neural architectures. In response, this paper re-thinks physically plausible cloth simulation: We propose NeuralClothSim, i.e., a new quasistatic cloth simulator using thin shells, in which surface deformation is encoded in neural network weights in the form of a neural field. Our memory-efficient solver operates on a new continuous coordinate-based surface representation called neural deformation fields (NDFs); it supervises NDF equilibria with the laws of the non-linear Kirchhoff-Love shell theory with a non-linear anisotropic material model. NDFs are adaptive: They 1) allocate their capacity to the deformation details and 2) allow surface state queries at arbitrary spatial resolutions without re-training. We show how to train NeuralClothSim while imposing hard boundary conditions and demonstrate multiple applications, such as material interpolation and simulation editing. The experimental results highlight the effectiveness of our continuous neural formulation. See our project page: //4dqv.mpi-inf.mpg.de/NeuralClothSim/.

Quantum computing has emerged as a powerful tool for solving complex computational problems, but access to real quantum hardware remains limited due to high costs and increasing demand for efficient quantum simulations. Unfortunately, software simulators on CPUs/GPUs such as Qiskit, ProjectQ, and Qsun offer flexibility and support for a large number of qubits, they struggle with high power consumption and limited processing speed, especially as qubit counts scale. Accordingly, quantum emulators implemented on dedicated hardware, such as FPGAs and analog circuits, offer a promising path for addressing energy efficiency concerns. However, existing studies on hardware-based emulators still face challenges in terms of limited flexibility, lack of fidelity evaluation, and power consumption. To overcome these gaps, we propose FQsun, a quantum emulator that enhances performance by integrating four key innovations: efficient memory organization, a configurable Quantum Gate Unit (QGU), optimized scheduling, and multiple number precisions. Five FQsun versions with different number precisions, including 16-bit floating point, 32-bit floating point, 16-bit fixed point, 24-bit fixed point, and 32-bit fixed point, are implemented on the Xilinx ZCU102 FPGA, utilizing between 9,226 and 18,093 LUTs, 1,440 and 7,031 FFs, 344 and 464 BRAMs, and 14 and 88 DSPs and consuming a maximum power of 2.41W. Experimental results demonstrate high accuracy in normalized gate speed, fidelity, and mean square error, particularly with 32-bit fixed-point and floating-point versions, establishing FQsun's capability as a precise quantum emulator. Benchmarking on quantum algorithms such as Quantum Fourier Transform, Parameter-Shift Rule, and Random Quantum Circuits reveals that FQsun achieves superior power-delay product, outperforming traditional software simulators on powerful CPUs by up to 9,870 times.

Penetration testing, a critical component of cybersecurity, typically requires extensive time and effort to find vulnerabilities. Beginners in this field often benefit from collaborative approaches with the community or experts. To address this, we develop CIPHER (Cybersecurity Intelligent Penetration-testing Helper for Ethical Researchers), a large language model specifically trained to assist in penetration testing tasks. We trained CIPHER using over 300 high-quality write-ups of vulnerable machines, hacking techniques, and documentation of open-source penetration testing tools. Additionally, we introduced the Findings, Action, Reasoning, and Results (FARR) Flow augmentation, a novel method to augment penetration testing write-ups to establish a fully automated pentesting simulation benchmark tailored for large language models. This approach fills a significant gap in traditional cybersecurity Q\&A benchmarks and provides a realistic and rigorous standard for evaluating AI's technical knowledge, reasoning capabilities, and practical utility in dynamic penetration testing scenarios. In our assessments, CIPHER achieved the best overall performance in providing accurate suggestion responses compared to other open-source penetration testing models of similar size and even larger state-of-the-art models like Llama 3 70B and Qwen1.5 72B Chat, particularly on insane difficulty machine setups. This demonstrates that the current capabilities of general LLMs are insufficient for effectively guiding users through the penetration testing process. We also discuss the potential for improvement through scaling and the development of better benchmarks using FARR Flow augmentation results. Our benchmark will be released publicly at //github.com/ibndias/CIPHER.

Accurate tissue segmentation in fetal brain MRI remains challenging due to the dynamically changing anatomical anatomy and contrast during fetal development. To enhance segmentation accuracy throughout gestation, we introduced AtlasSeg, a dual-U-shape convolution network incorporating gestational age (GA) specific information as guidance. By providing a publicly available fetal brain atlas with segmentation label at the corresponding GA, AtlasSeg effectively extracted the contextual features of age-specific patterns in atlas branch and generated tissue segmentation in segmentation branch. Multi-scale attentive atlas feature fusions were constructed in all stages during encoding and decoding, giving rise to a dual-U-shape network to assist feature flow and information interactions between two branches. AtlasSeg outperformed six well-known segmentation networks in both our internal fetal brain MRI dataset and the external FeTA dataset. Ablation experiments demonstrate the efficiency of atlas guidance and the attention mechanism. The proposed AtlasSeg demonstrated superior segmentation performance against other convolution networks with higher segmentation accuracy, and may facilitate fetal brain MRI analysis in large-scale fetal brain studies.

Endoscopic surgery relies on two-dimensional views, posing challenges for surgeons in depth perception and instrument manipulation. While Monocular Visual Simultaneous Localization and Mapping (MVSLAM) has emerged as a promising solution, its implementation in endoscopic procedures faces significant challenges due to hardware limitations, such as the use of a monocular camera and the absence of odometry sensors. This study presents BodySLAM, a robust deep learning-based MVSLAM approach that addresses these challenges through three key components: CycleVO, a novel unsupervised monocular pose estimation module; the integration of the state-of-the-art Zoe architecture for monocular depth estimation; and a 3D reconstruction module creating a coherent surgical map. The approach is rigorously evaluated using three publicly available datasets (Hamlyn, EndoSLAM, and SCARED) spanning laparoscopy, gastroscopy, and colonoscopy scenarios, and benchmarked against four state-of-the-art methods. Results demonstrate that CycleVO exhibited competitive performance with the lowest inference time among pose estimation methods, while maintaining robust generalization capabilities, whereas Zoe significantly outperformed existing algorithms for depth estimation in endoscopy. BodySLAM's strong performance across diverse endoscopic scenarios demonstrates its potential as a viable MVSLAM solution for endoscopic applications.

In automatic speech recognition, any factor that alters the acoustic properties of speech can pose a challenge to the system's performance. This paper presents a novel approach for automatic whispered speech recognition in the Irish dialect using the self-supervised WavLM model. Conventional automatic speech recognition systems often fail to accurately recognise whispered speech due to its distinct acoustic properties and the scarcity of relevant training data. To address this challenge, we utilized a pre-trained WavLM model, fine-tuned with a combination of whispered and normal speech data from the wTIMIT and CHAINS datasets, which include the English language in Singaporean and Irish dialects, respectively. Our baseline evaluation with the OpenAI Whisper model highlighted its limitations, achieving a Word Error Rate (WER) of 18.8% and a Character Error Rate (CER) of 4.24% on whispered speech. In contrast, the proposed WavLM-based system significantly improved performance, achieving a WER of 9.22% and a CER of 2.59%. These results demonstrate the efficacy of our approach in recognising whispered speech and underscore the importance of tailored acoustic modeling for robust automatic speech recognition systems. This study provides valuable insights into developing effective automatic speech recognition solutions for challenging speech affected by whisper and dialect. The source codes for this paper are freely available.

The traditional visual-inertial SLAM system often struggles with stability under low-light or motion-blur conditions, leading to potential lost of trajectory tracking. High accuracy and robustness are essential for the long-term and stable localization capabilities of SLAM systems. Addressing the challenges of enhancing robustness and accuracy in visual-inertial SLAM, this paper propose SuperVINS, a real-time visual-inertial SLAM framework designed for challenging imaging conditions. In contrast to geometric modeling, deep learning features are capable of fully leveraging the implicit information present in images, which is often not captured by geometric features. Therefore, SuperVINS, developed as an enhancement of VINS-Fusion, integrates the deep learning neural network model SuperPoint for feature point extraction and loop closure detection. At the same time, a deep learning neural network LightGlue model for associating feature points is integrated in front-end feature matching. A feature matching enhancement strategy based on the RANSAC algorithm is proposed. The system is allowed to set different masks and RANSAC thresholds for various environments, thereby balancing computational cost and localization accuracy. Additionally, it allows for flexible training of specific SuperPoint bag of words tailored for loop closure detection in particular environments. The system enables real-time localization and mapping. Experimental validation on the well-known EuRoC dataset demonstrates that SuperVINS is comparable to other visual-inertial SLAM system in accuracy and robustness across the most challenging sequences. This paper analyzes the advantages of SuperVINS in terms of accuracy, real-time performance, and robustness. To facilitate knowledge exchange within the field, we have made the code for this paper publicly available.

Continuous-time trajectory representation has gained significant popularity in recent years, as it offers an elegant formulation that allows the fusion of a larger number of sensors and sensing modalities, overcoming limitations of traditional discrete-time frameworks. To bolster the adoption of the continuous-time paradigm, we propose a so-called Gaussian Process Trajectory Representation (GPTR) framework for continuous-time motion estimation (CTME) tasks. Our approach stands out by employing a third-order random jerk model, featuring closed-form expressions for both rotational and translational state derivatives. This model provides smooth, continuous trajectory representations that are crucial for precise estimation of complex motion. To support the wider robotics and computer vision communities, we have made the source code for GPTR available as a light-weight header-only library. This format was chosen for its ease of integration, allowing developers to incorporate GPTR into existing systems without needing extensive code modifications. Moreover, we also provide a set of optimization examples with LiDAR, camera, IMU, UWB factors, and closed-form analytical Jacobians under the proposed GP framework. Our experiments demonstrate the efficacy and efficiency of GP-based trajectory representation in various motion estimation tasks, and the examples can serve as the prototype to help researchers quickly develop future applications such as batch optimization, calibration, sensor fusion, trajectory planning, etc., with continuous-time trajectory representation. Our project is accessible at //github.com/brytsknguyen/gptr .

Calculating the effort required to complete a task has always been somewhat difficult, as it depends on each person and becomes very subjective. For this reason, different methodologies were developed to try to standardize these procedures. This article addresses some of the problems that arise when applying NASA-Task Load Index (NASA-TLX), a methodology to calculate the mental workload of tasks performed in industrial environments. In addition, an improvement of this methodology is proposed to adapt it to the new times and to emerging Extended Reality (XR) technologies. Finally, a system is proposed for automatic collection of user performance metrics, providing an autonomous method that collects this information and does not depend on the users' willingness to fill in a feedback questionnaire.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

北京阿比特科技有限公司