亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Chronic stress can significantly affect physical and mental health. The advent of wearable technology allows for the tracking of physiological signals, potentially leading to innovative stress prediction and intervention methods. However, challenges such as label scarcity and data heterogeneity render stress prediction difficult in practice. To counter these issues, we have developed a multimodal personalized stress prediction system using wearable biosignal data. We employ self-supervised learning (SSL) to pre-train the models on each subject's data, allowing the models to learn the baseline dynamics of the participant's biosignals prior to fine-tuning the stress prediction task. We test our model on the Wearable Stress and Affect Detection (WESAD) dataset, demonstrating that our SSL models outperform non-SSL models while utilizing less than 5% of the annotations. These results suggest that our approach can personalize stress prediction to each user with minimal annotations. This paradigm has the potential to enable personalized prediction of a variety of recurring health events using complex multimodal data streams.

相關內容

Social influence is a strong determinant of food consumption, which in turn influences health. Although consistent observations have been made on the role of social factors in driving similarities in food consumption, much less is known about the precise governing mechanisms. We study social influence on food choice through carefully designed causal analyses, leveraging the sequential nature of shop queues on a major university campus. In particular, we consider a large number of adjacent purchases where a focal user immediately follows another user ("partner") in the checkout queue and both make a purchase. Identifying the partner's impact on the focal user, we find strong evidence of a specific behavioral mechanism for how dietary similarities between individuals arise: purchasing mimicry, a phenomenon where the focal user copies the partner's purchases. For instance, across food additions purchased during lunchtime together with a meal, we find that the focal user is significantly more likely to purchase the food item when the partner buys the item, v.s. when the partner does not, increasing the purchasing probability by 14% in absolute terms, or by 83% in relative terms. The effect is observed across all food types, but largest for condiments, and smallest for soft drinks. We find that no such effect is observed when a focal user is compared to a random (rather than directly preceding) partner. Furthermore, purchasing mimicry is present across age, gender, and status subpopulations, but strongest for students and the youngest persons. Finally, we find a dose-response relationship whereby mimicry decreases as proximity in the purchasing queue decreases. The results of this study elucidate the behavioral mechanism of purchasing mimicry and have further implications for understanding and improving dietary behaviors on campus.

When applying deep learning to remote sensing data in archaeological research, a notable obstacle is the limited availability of suitable datasets for training models. The application of transfer learning is frequently employed to mitigate this drawback. However, there is still a need to explore its effectiveness when applied across different archaeological datasets. This paper compares the performance of various transfer learning configurations using two semantic segmentation deep neural networks on two LiDAR datasets. The experimental results indicate that transfer learning-based approaches in archaeology can lead to performance improvements, although a systematic enhancement has not yet been observed. We provide specific insights about the validity of such techniques that can serve as a baseline for future works.

Winner Take All (WTA) circuits a type of Spiking Neural Networks (SNN) have been suggested as facilitating the brain's ability to process information in a Bayesian manner. Research has shown that WTA circuits are capable of approximating hierarchical Bayesian models via Expectation Maximization (EM). So far, research in this direction has focused on bottom up processes. This is contrary to neuroscientific evidence that shows that, besides bottom up processes, top down processes too play a key role in information processing by the human brain. Several functions ascribed to top down processes include direction of attention, adjusting for expectations, facilitation of encoding and recall of learned information, and imagery. This paper explores whether WTA circuits are suitable for further integrating information represented in separate WTA networks. Furthermore, it explores whether, and under what circumstances, top down processes can improve WTA network performance with respect to inference and learning. The results show that WTA circuits are capable of integrating the probabilistic information represented by other WTA networks, and that top down processes can improve a WTA network's inference and learning performance. Notably, it is able to do this according to key neuromorphic principles, making it ideal for low-latency and energy efficient implementation on neuromorphic hardware.

Reasonably and effectively monitoring arrhythmias through ECG signals has significant implications for human health. With the development of deep learning, numerous ECG classification algorithms based on deep learning have emerged. However, most existing algorithms trade off high accuracy for complex models, resulting in high storage usage and power consumption. This also inevitably increases the difficulty of implementation on wearable Artificial Intelligence-of-Things (AIoT) devices with limited resources. In this study, we proposed a universally applicable ultra-lightweight binary neural network(BNN) that is capable of 5-class and 17-class arrhythmia classification based on ECG signals. Our BNN achieves 96.90% (full precision 97.09%) and 97.50% (full precision 98.00%) accuracy for 5-class and 17-class classification, respectively, with state-of-the-art storage usage (3.76 KB and 4.45 KB). Compared to other binarization works, our approach excels in supporting two multi-classification modes while achieving the smallest known storage space. Moreover, our model achieves optimal accuracy in 17-class classification and boasts an elegantly simple network architecture. The algorithm we use is optimized specifically for hardware implementation. Our research showcases the potential of lightweight deep learning models in the healthcare industry, specifically in wearable medical devices, which hold great promise for improving patient outcomes and quality of life. Code is available on: //github.com/xpww/ECG_BNN_Net

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field.

Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing DRL to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in DRL. Next, we discuss DRL deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of DRL in data processing and analytics, ranging from data preparation, natural language processing to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using DRL in data processing and analytics.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司