亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent developments in 2D visual generation have been remarkably successful. However, 3D and 4D generation remain challenging in real-world applications due to the lack of large-scale 4D data and effective model design. In this paper, we propose to jointly investigate general 3D and 4D generation by leveraging camera and object movements commonly observed in daily life. Due to the lack of real-world 4D data in the community, we first propose a data curation pipeline to obtain camera poses and object motion strength from videos. Based on this pipeline, we introduce a large-scale real-world 4D scene dataset: CamVid-30K. By leveraging all the 3D and 4D data, we develop our framework, GenXD, which allows us to produce any 3D or 4D scene. We propose multiview-temporal modules, which disentangle camera and object movements, to seamlessly learn from both 3D and 4D data. Additionally, GenXD employs masked latent conditions to support a variety of conditioning views. GenXD can generate videos that follow the camera trajectory as well as consistent 3D views that can be lifted into 3D representations. We perform extensive evaluations across various real-world and synthetic datasets, demonstrating GenXD's effectiveness and versatility compared to previous methods in 3D and 4D generation.

相關內容

3D是(shi)英文“Three Dimensions”的(de)(de)簡稱,中文是(shi)指三維(wei)(wei)、三個維(wei)(wei)度、三個坐標,即(ji)有(you)長、有(you)寬、有(you)高,換句話說(shuo),就是(shi)立體(ti)的(de)(de),是(shi)相(xiang)對于(yu)只(zhi)有(you)長和(he)寬的(de)(de)平面(mian)(2D)而言(yan)。

Assessing the importance of individual training samples is a key challenge in machine learning. Traditional approaches retrain models with and without specific samples, which is computationally expensive and ignores dependencies between data points. We introduce LossVal, an efficient data valuation method that computes importance scores during neural network training by embedding a self-weighting mechanism into loss functions like cross-entropy and mean squared error. LossVal reduces computational costs, making it suitable for large datasets and practical applications. Experiments on classification and regression tasks across multiple datasets show that LossVal effectively identifies noisy samples and is able to distinguish helpful from harmful samples. We examine the gradient calculation of LossVal to highlight its advantages. The source code is available at: //github.com/twibiral/LossVal

Can foundation models (such as ChatGPT) clean your data? In this proposal, we demonstrate that indeed ChatGPT can assist in data cleaning by suggesting corrections for specific cells in a data table (scenario 1). However, ChatGPT may struggle with datasets it has never encountered before (e.g., local enterprise data) or when the user requires an explanation of the source of the suggested clean values. To address these issues, we developed a retrieval-based method that complements ChatGPT's power with a user-provided data lake. The data lake is first indexed, we then retrieve the top-k relevant tuples to the user's query tuple and finally leverage ChatGPT to infer the correct value (scenario 2). Nevertheless, sharing enterprise data with ChatGPT, an externally hosted model, might not be feasible for privacy reasons. To assist with this scenario, we developed a custom RoBERTa-based foundation model that can be locally deployed. By fine-tuning it on a small number of examples, it can effectively make value inferences based on the retrieved tuples (scenario 3). Our proposed system, RetClean, seamlessly supports all three scenarios and provides a user-friendly GUI that enables the VLDB audience to explore and experiment with the system.

Despite rapid advancements in TTS models, a consistent and robust human evaluation framework is still lacking. For example, MOS tests fail to differentiate between similar models, and CMOS's pairwise comparisons are time-intensive. The MUSHRA test is a promising alternative for evaluating multiple TTS systems simultaneously, but in this work we show that its reliance on matching human reference speech unduly penalises the scores of modern TTS systems that can exceed human speech quality. More specifically, we conduct a comprehensive assessment of the MUSHRA test, focusing on its sensitivity to factors such as rater variability, listener fatigue, and reference bias. Based on our extensive evaluation involving 492 human listeners across Hindi and Tamil we identify two primary shortcomings: (i) reference-matching bias, where raters are unduly influenced by the human reference, and (ii) judgement ambiguity, arising from a lack of clear fine-grained guidelines. To address these issues, we propose two refined variants of the MUSHRA test. The first variant enables fairer ratings for synthesized samples that surpass human reference quality. The second variant reduces ambiguity, as indicated by the relatively lower variance across raters. By combining these approaches, we achieve both more reliable and more fine-grained assessments. We also release MANGO, a massive dataset of 246,000 human ratings, the first-of-its-kind collection for Indian languages, aiding in analyzing human preferences and developing automatic metrics for evaluating TTS systems.

Video face swapping is becoming increasingly popular across various applications, yet existing methods primarily focus on static images and struggle with video face swapping because of temporal consistency and complex scenarios. In this paper, we present the first diffusion-based framework specifically designed for video face swapping. Our approach introduces a novel image-video hybrid training framework that leverages both abundant static image data and temporal video sequences, addressing the inherent limitations of video-only training. The framework incorporates a specially designed diffusion model coupled with a VidFaceVAE that effectively processes both types of data to better maintain temporal coherence of the generated videos. To further disentangle identity and pose features, we construct the Attribute-Identity Disentanglement Triplet (AIDT) Dataset, where each triplet has three face images, with two images sharing the same pose and two sharing the same identity. Enhanced with a comprehensive occlusion augmentation, this dataset also improves robustness against occlusions. Additionally, we integrate 3D reconstruction techniques as input conditioning to our network for handling large pose variations. Extensive experiments demonstrate that our framework achieves superior performance in identity preservation, temporal consistency, and visual quality compared to existing methods, while requiring fewer inference steps. Our approach effectively mitigates key challenges in video face swapping, including temporal flickering, identity preservation, and robustness to occlusions and pose variations.

Graph Neural Networks (GNNs) have become invaluable intellectual property in graph-based machine learning. However, their vulnerability to model stealing attacks when deployed within Machine Learning as a Service (MLaaS) necessitates robust Ownership Demonstration (OD) techniques. Watermarking is a promising OD framework for Deep Neural Networks, but existing methods fail to generalize to GNNs due to the non-Euclidean nature of graph data. Previous works on GNN watermarking have primarily focused on node and graph classification, overlooking Link Prediction (LP). In this paper, we propose GENIE (watermarking Graph nEural Networks for lInk prEdiction), the first-ever scheme to watermark GNNs for LP. GENIE creates a novel backdoor for both node-representation and subgraph-based LP methods, utilizing a unique trigger set and a secret watermark vector. Our OD scheme is equipped with Dynamic Watermark Thresholding (DWT), ensuring high verification probability (>99.99%) while addressing practical issues in existing watermarking schemes. We extensively evaluate GENIE across 4 model architectures (i.e., SEAL, GCN, GraphSAGE and NeoGNN) and 7 real-world datasets. Furthermore, we validate the robustness of GENIE against 11 state-of-the-art watermark removal techniques and 3 model extraction attacks. We also show GENIE's resilience against ownership piracy attacks. Finally, we discuss a defense strategy to counter adaptive attacks against GENIE.

Recent studies have highlighted significant fairness issues in Graph Transformer (GT) models, particularly against subgroups defined by sensitive features. Additionally, GTs are computationally intensive and memory-demanding, limiting their application to large-scale graphs. Our experiments demonstrate that graph partitioning can enhance the fairness of GT models while reducing computational complexity. To understand this improvement, we conducted a theoretical investigation into the root causes of fairness issues in GT models. We found that the sensitive features of higher-order nodes disproportionately influence lower-order nodes, resulting in sensitive feature bias. We propose Fairness-aware scalable GT based on Graph Partitioning (FairGP), which partitions the graph to minimize the negative impact of higher-order nodes. By optimizing attention mechanisms, FairGP mitigates the bias introduced by global attention, thereby enhancing fairness. Extensive empirical evaluations on six real-world datasets validate the superior performance of FairGP in achieving fairness compared to state-of-the-art methods. The codes are available at //github.com/LuoRenqiang/FairGP.

The emerging discipline of Computational Science is concerned with using computers to simulate or solve scientific problems. These problems span the natural, political, and social sciences. The discipline has exploded over the past decade due to the emergence of larger amounts of observational data and large-scale simulations that were previously unavailable or unfeasible. However, there are still significant challenges with managing the large amounts of data and simulations. The database management systems community has always been at the forefront of the development of the theory and practice of techniques for formalizing and actualizing systems that access or query large datasets. In this paper, we present EmpireDB, a vision for a data management system to accelerate computational sciences. In addition, we identify challenges and opportunities for the database community to further the fledgling field of computational sciences. Finally, we present preliminary evidence showing that the optimized components in EmpireDB could lead to improvements in performance compared to contemporary implementations.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司