亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern privacy regulations grant citizens the right to be forgotten by products, services and companies. In case of machine learning (ML) applications, this necessitates deletion of data not only from storage archives but also from ML models. Due to an increasing need for regulatory compliance required for ML applications, machine unlearning is becoming an emerging research problem. The right to be forgotten requests come in the form of removal of a certain set or class of data from the already trained ML model. Practical considerations preclude retraining of the model from scratch after discarding the deleted data. The few existing studies use either the whole training data, or a subset of training data, or some metadata stored during training to update the model weights for unlearning. However, in many cases, no data related to the training process or training samples may be accessible for the unlearning purpose. We therefore ask the question: is it possible to achieve unlearning with zero training samples? In this paper, we introduce the novel problem of zero-shot machine unlearning that caters for the extreme but practical scenario where zero original data samples are available for use. We then propose two novel solutions for zero-shot machine unlearning based on (a) error minimizing-maximizing noise and (b) gated knowledge transfer. These methods remove the information of the forget data from the model while maintaining the model efficacy on the retain data. The zero-shot approach offers good protection against the model inversion attacks and membership inference attacks. We introduce a new evaluation metric, Anamnesis Index (AIN) to effectively measure the quality of the unlearning method. The experiments show promising results for unlearning in deep learning models on benchmark vision data-sets. The source code is available here: //github.com/ayu987/zero-shot-unlearning

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 線性的 · 平滑 · 可約的 · 損失 ·
2023 年 7 月 20 日

We formalize the problem of machine unlearning as design of efficient unlearning algorithms corresponding to learning algorithms which perform a selection of adaptive queries from structured query classes. We give efficient unlearning algorithms for linear and prefix-sum query classes. As applications, we show that unlearning in many problems, in particular, stochastic convex optimization (SCO), can be reduced to the above, yielding improved guarantees for the problem. In particular, for smooth Lipschitz losses and any $\rho>0$, our results yield an unlearning algorithm with excess population risk of $\tilde O\big(\frac{1}{\sqrt{n}}+\frac{\sqrt{d}}{n\rho}\big)$ with unlearning query (gradient) complexity $\tilde O(\rho \cdot \text{Retraining Complexity})$, where $d$ is the model dimensionality and $n$ is the initial number of samples. For non-smooth Lipschitz losses, we give an unlearning algorithm with excess population risk $\tilde O\big(\frac{1}{\sqrt{n}}+\big(\frac{\sqrt{d}}{n\rho}\big)^{1/2}\big)$ with the same unlearning query (gradient) complexity. Furthermore, in the special case of Generalized Linear Models (GLMs), such as those in linear and logistic regression, we get dimension-independent rates of $\tilde O\big(\frac{1}{\sqrt{n}} +\frac{1}{(n\rho)^{2/3}}\big)$ and $\tilde O\big(\frac{1}{\sqrt{n}} +\frac{1}{(n\rho)^{1/3}}\big)$ for smooth Lipschitz and non-smooth Lipschitz losses respectively. Finally, we give generalizations of the above from one unlearning request to \textit{dynamic} streams consisting of insertions and deletions.

Adversarial examples are inputs to machine learning models that an attacker has intentionally designed to confuse the model into making a mistake. Such examples pose a serious threat to the applicability of machine-learning-based systems, especially in life- and safety-critical domains. To address this problem, the area of adversarial robustness investigates mechanisms behind adversarial attacks and defenses against these attacks. This survey reviews a particular subset of this literature that focuses on investigating properties of training data in the context of model robustness under evasion attacks. It first summarizes the main properties of data leading to adversarial vulnerability. It then discusses guidelines and techniques for improving adversarial robustness by enhancing the data representation and learning procedures, as well as techniques for estimating robustness guarantees given particular data. Finally, it discusses gaps of knowledge and promising future research directions in this area.

Traditionally, sparse retrieval systems relied on lexical representations to retrieve documents, such as BM25, dominated information retrieval tasks. With the onset of pre-trained transformer models such as BERT, neural sparse retrieval has led to a new paradigm within retrieval. Despite the success, there has been limited software supporting different sparse retrievers running in a unified, common environment. This hinders practitioners from fairly comparing different sparse models and obtaining realistic evaluation results. Another missing piece is, that a majority of prior work evaluates sparse retrieval models on in-domain retrieval, i.e. on a single dataset: MS MARCO. However, a key requirement in practical retrieval systems requires models that can generalize well to unseen out-of-domain, i.e. zero-shot retrieval tasks. In this work, we provide SPRINT, a unified Python toolkit based on Pyserini and Lucene, supporting a common interface for evaluating neural sparse retrieval. The toolkit currently includes five built-in models: uniCOIL, DeepImpact, SPARTA, TILDEv2 and SPLADEv2. Users can also easily add customized models by defining their term weighting method. Using our toolkit, we establish strong and reproducible zero-shot sparse retrieval baselines across the well-acknowledged benchmark, BEIR. Our results demonstrate that SPLADEv2 achieves the best average score of 0.470 nDCG@10 on BEIR amongst all neural sparse retrievers. In this work, we further uncover the reasons behind its performance gain. We show that SPLADEv2 produces sparse representations with a majority of tokens outside of the original query and document which is often crucial for its performance gains, i.e. a limitation among its other sparse counterparts. We provide our SPRINT toolkit, models, and data used in our experiments publicly here at //github.com/thakur-nandan/sprint.

Large Language Models (LLMs) have a privacy concern because they memorize training data (including personally identifiable information (PII) like emails and phone numbers) and leak it during inference. A company can train an LLM on its domain-customized data which can potentially also include their users' PII. In order to comply with privacy laws such as the "right to be forgotten", the data points of users that are most vulnerable to extraction could be deleted. We find that once the most vulnerable points are deleted, a new set of points become vulnerable to extraction. So far, little attention has been given to understanding memorization for fine-tuned models. In this work, we also show that not only do fine-tuned models leak their training data but they also leak the pre-training data (and PII) memorized during the pre-training phase. The property of new data points becoming vulnerable to extraction after unlearning and leakage of pre-training data through fine-tuned models can pose significant privacy and legal concerns for companies that use LLMs to offer services. We hope this work will start an interdisciplinary discussion within AI and law communities regarding the need for policies to tackle these issues.

Machine learning has attracted widespread attention and evolved into an enabling technology for a wide range of highly successful applications, such as intelligent computer vision, speech recognition, medical diagnosis, and more. Yet a special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning. This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality. At the same time, this ambitious problem has led to numerous research efforts aimed at confronting its challenges. To the best of our knowledge, no study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios. Accordingly, with this survey, we aim to capture the key concepts of unlearning techniques. The existing solutions are classified and summarized based on their characteristics within an up-to-date and comprehensive review of each category's advantages and limitations. The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.

When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

Humans can quickly learn new visual concepts, perhaps because they can easily visualize or imagine what novel objects look like from different views. Incorporating this ability to hallucinate novel instances of new concepts might help machine vision systems perform better low-shot learning, i.e., learning concepts from few examples. We present a novel approach to low-shot learning that uses this idea. Our approach builds on recent progress in meta-learning ("learning to learn") by combining a meta-learner with a "hallucinator" that produces additional training examples, and optimizing both models jointly. Our hallucinator can be incorporated into a variety of meta-learners and provides significant gains: up to a 6 point boost in classification accuracy when only a single training example is available, yielding state-of-the-art performance on the challenging ImageNet low-shot classification benchmark.

北京阿比特科技有限公司