Retrieval augmentation, which enhances downstream models by a knowledge retriever and an external corpus instead of by merely increasing the number of model parameters, has been successfully applied to many natural language processing (NLP) tasks such as text classification, question answering and so on. However, existing methods that separately or asynchronously train the retriever and downstream model mainly due to the non-differentiability between the two parts, usually lead to degraded performance compared to end-to-end joint training. In this paper, we propose Differentiable Retrieval Augmentation via Generative lANguage modeling(Dragan), to address this problem by a novel differentiable reformulation. We demonstrate the effectiveness of our proposed method on a challenging NLP task in e-commerce search, namely query intent classification. Both the experimental results and ablation study show that the proposed method significantly and reasonably improves the state-of-the-art baselines on both offline evaluation and online A/B test.
Assistive devices, such as exoskeletons and prostheses, have revolutionized the field of rehabilitation and mobility assistance. Efficiently detecting transitions between different activities, such as walking, stair ascending and descending, and sitting, is crucial for ensuring adaptive control and enhancing user experience. We here present an approach for real-time transition detection, aimed at optimizing the processing-time performance. By establishing activity-specific threshold values through trained machine learning models, we effectively distinguish motion patterns and we identify transition moments between locomotion modes. This threshold-based method improves real-time embedded processing time performance by up to 11 times compared to machine learning approaches. The efficacy of the developed finite-state machine is validated using data collected from three different measurement systems. Moreover, experiments with healthy participants were conducted on an active pelvis orthosis to validate the robustness and reliability of our approach. The proposed algorithm achieved high accuracy in detecting transitions between activities. These promising results show the robustness and reliability of the method, reinforcing its potential for integration into practical applications.
We discover the presence of quantization artifacts in Vision Transformers (ViTs), which arise due to the image tokenization step inherent in these architectures. These artifacts result in coarsely quantized features, which negatively impact performance, especially on downstream dense prediction tasks. We present a zero-shot method to improve how pre-trained ViTs handle spatial quantization. In particular, we propose to ensemble the features obtained from perturbing input images via sub-token spatial translations, inspired by Stochastic Resonance, a method traditionally applied to climate dynamics and signal processing. We term our method ``Stochastic Resonance Transformer" (SRT), which we show can effectively super-resolve features of pre-trained ViTs, capturing more of the local fine-grained structures that might otherwise be neglected as a result of tokenization. SRT can be applied at any layer, on any task, and does not require any fine-tuning. The advantage of the former is evident when applied to monocular depth prediction, where we show that ensembling model outputs are detrimental while applying SRT on intermediate ViT features outperforms the baseline models by an average of 4.7% and 14.9% on the RMSE and RMSE-log metrics across three different architectures. When applied to semi-supervised video object segmentation, SRT also improves over the baseline models uniformly across all metrics, and by an average of 2.4% in F&J score. We further show that these quantization artifacts can be attenuated to some extent via self-distillation. On the unsupervised salient region segmentation, SRT improves upon the base model by an average of 2.1% on the maxF metric. Finally, despite operating purely on pixel-level features, SRT generalizes to non-dense prediction tasks such as image retrieval and object discovery, yielding consistent improvements of up to 2.6% and 1.0% respectively.
The recent success of text-to-image generation diffusion models has also revolutionized semantic image editing, enabling the manipulation of images based on query/target texts. Despite these advancements, a significant challenge lies in the potential introduction of contextual prior bias in pre-trained models during image editing, e.g., making unexpected modifications to inappropriate regions. To address this issue, we present a novel approach called Dual-Cycle Diffusion, which generates an unbiased mask to guide image editing. The proposed model incorporates a Bias Elimination Cycle that consists of both a forward path and an inverted path, each featuring a Structural Consistency Cycle to ensure the preservation of image content during the editing process. The forward path utilizes the pre-trained model to produce the edited image, while the inverted path converts the result back to the source image. The unbiased mask is generated by comparing differences between the processed source image and the edited image to ensure that both conform to the same distribution. Our experiments demonstrate the effectiveness of the proposed method, as it significantly improves the D-CLIP score from 0.272 to 0.283. The code will be available at //github.com/JohnDreamer/DualCycleDiffsion.
With the rapid development of facial forgery techniques, forgery detection has attracted more and more attention due to security concerns. Existing approaches attempt to use frequency information to mine subtle artifacts under high-quality forged faces. However, the exploitation of frequency information is coarse-grained, and more importantly, their vanilla learning process struggles to extract fine-grained forgery traces. To address this issue, we propose a progressive enhancement learning framework to exploit both the RGB and fine-grained frequency clues. Specifically, we perform a fine-grained decomposition of RGB images to completely decouple the real and fake traces in the frequency space. Subsequently, we propose a progressive enhancement learning framework based on a two-branch network, combined with self-enhancement and mutual-enhancement modules. The self-enhancement module captures the traces in different input spaces based on spatial noise enhancement and channel attention. The Mutual-enhancement module concurrently enhances RGB and frequency features by communicating in the shared spatial dimension. The progressive enhancement process facilitates the learning of discriminative features with fine-grained face forgery clues. Extensive experiments on several datasets show that our method outperforms the state-of-the-art face forgery detection methods.
Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.