亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper provides a comprehensive review of the literature concerning the utilization of Natural Language Processing (NLP) techniques, with a particular focus on transformer-based large language models (LLMs) trained using Big Code, within the domain of AI-assisted programming tasks. LLMs, augmented with software naturalness, have played a crucial role in facilitating AI-assisted programming applications, including code generation, code completion, code translation, code refinement, code summarization, defect detection, and clone detection. Notable examples of such applications include the GitHub Copilot powered by OpenAI's Codex and DeepMind AlphaCode. This paper presents an overview of the major LLMs and their applications in downstream tasks related to AI-assisted programming. Furthermore, it explores the challenges and opportunities associated with incorporating NLP techniques with software naturalness in these applications, with a discussion on extending AI-assisted programming capabilities to Apple's Xcode for mobile software development. This paper also presents the challenges of and opportunities for incorporating NLP techniques with software naturalness, empowering developers with advanced coding assistance and streamlining the software development process.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

This paper develops a Decentralized Multi-Agent Reinforcement Learning (Dec-MARL) method to solve the SoC balancing problem in the distributed energy storage system (DESS). First, the SoC balancing problem is formulated into a finite Markov decision process with action constraints derived from demand balance, which can be solved by Dec-MARL. Specifically, the first-order average consensus algorithm is utilized to expand the observations of the DESS state in a fully-decentralized way, and the initial actions (i.e., output power) are decided by the agents (i.e., energy storage units) according to these observations. In order to get the final actions in the allowable range, a counterfactual demand balance algorithm is proposed to balance the total demand and the initial actions. Next, the agents execute the final actions and get local rewards from the environment, and the DESS steps into the next state. Finally, through the first-order average consensus algorithm, the agents get the average reward and the expended observation of the next state for later training. By the above procedure, Dec-MARL reveals outstanding performance in a fully-decentralized system without any expert experience or constructing any complicated model. Besides, it is flexible and can be extended to other decentralized multi-agent systems straightforwardly. Extensive simulations have validated the effectiveness and efficiency of Dec-MARL.

The emergence of generative Large Language Models (LLMs) emphasizes the need for accurate and efficient prompting approaches. LLMs are often applied in Few-Shot Learning (FSL) contexts, where tasks are executed with minimal training data. FSL has become popular in many Artificial Intelligence (AI) subdomains, including AI for health. Rare diseases affect a small fraction of the population. Rare disease identification from clinical notes inherently requires FSL techniques due to limited data availability. Manual data collection and annotation is both expensive and time-consuming. In this paper, we propose Models-Vote Prompting (MVP), a flexible prompting approach for improving the performance of LLM queries in FSL settings. MVP works by prompting numerous LLMs to perform the same tasks and then conducting a majority vote on the resulting outputs. This method achieves improved results to any one model in the ensemble on one-shot rare disease identification and classification tasks. We also release a novel rare disease dataset for FSL, available to those who signed the MIMIC-IV Data Use Agreement (DUA). Furthermore, in using MVP, each model is prompted multiple times, substantially increasing the time needed for manual annotation, and to address this, we assess the feasibility of using JSON for automating generative LLM evaluation.

This paper proposes a new method for determining the simulation parameters of the Jiles-Atherton Model used to simulate the first magnetization curve and hysteresis loop in ferromagnetic materials. The Jiles-Atherton Model is an important tool in engineering applications due to its relatively simple differential formulation. However, determining the simulation parameters for the anhysteretic curve is challenging. Several methods have been proposed, primarily based on mathematical aspects of the anhysteretic and first magnetization curves and hysteresis loops. This paper focuses on finding the magnetic moments of the material, which are used to define the simulation parameters for its anhysteretic curve. The proposed method involves using the susceptibility of the material and a linear approximation of a paramagnet to find the magnetic moments. The simulation parameters can then be found based on the magnetic moments. The method is validated theoretically and experimentally and offers a more physical approach to finding simulation parameters for the anhysteretic curve and a simplified way of determining the magnetic moments of the material.

Lawful Interception (LI) is a legal obligation of Communication Service Providers (CSPs) to provide interception capabilities to Law Enforcement Agencies (LEAs) in order to gain insightful data from network communications for criminal proceedings, e.g., network identifiers for tracking suspects. With the privacy-enhancements of network identifiers in the 5th generation of mobile networks (5G), LEAs need to interact with CSPs for network identifier resolution. This raises new privacy issues, as untrusted CSPs are able to infer sensitive information about ongoing investigations, e.g., the identities of their subscribers under suspicion. In this work, we propose P3LI5, a novel system that enables LEAs to privately query CSPs for network identifier resolution leveraging on an information retrieval protocol, SparseWPIR, that is based on private information retrieval and its weakly private version. As such, P3LI5 can be adapted to various operational scenarios with different confidentiality or latency requirements, by selectively allowing a bounded information leakage for improved performance. We implement P3LI5 on the 5G LI infrastructure using well known open-source projects and demonstrate its scalability to large databases while retaining low latency. To the best of our knowledge, P3LI5 is the first proposal for addressing the privacy issues raised by the mandatory requirement for LI on the 5G core network.

In times of crisis, international travel becomes tenuous and anxiety provoking. The crisis informatics and Human-Computer Interaction (HCI) community has paid increasing attention to the use of Information and Communication Technologies (ICTs) in various crisis settings. However, little is known about the travelers' actual experiences in whole trips in crises. In this paper, we bridge the gap by presenting a study on Chinese travelers' encounters in their international journeys to the US during a multifacet crisis and their use of ICTs to overcome difficulties in the journeys. We interviewed 22 Chinese travelers who had successfully come to the US during the crisis. The findings showed how travelers improvised to reconnect the broken international travel infrastructure. We also discuss the findings with the literature on infrastructure, and crisis informatics, and provide design implications for travel authorities and agencies.

In this paper, we tackle the emerging challenge of unintended harmful content generation in Large Language Models (LLMs) with a novel dual-stage optimisation technique using adversarial fine-tuning. Our two-pronged approach employs an adversarial model, fine-tuned to generate potentially harmful prompts, and a judge model, iteratively optimised to discern these prompts. In this adversarial cycle, the two models seek to outperform each other in the prompting phase, generating a dataset of rich examples which are then used for fine-tuning. This iterative application of prompting and fine-tuning allows continuous refinement and improved performance. The performance of our approach is evaluated through classification accuracy on a dataset consisting of problematic prompts not detected by GPT-4, as well as a selection of contentious but unproblematic prompts. We show considerable increase in classification accuracy of the judge model on this challenging dataset as it undergoes the optimisation process. Furthermore, we show that a rudimentary model \texttt{ada} can achieve 13\% higher accuracy on the hold-out test set than GPT-4 after only a few rounds of this process, and that this fine-tuning improves performance in parallel tasks such as toxic comment identification.

Risky drivers account for 70% of fatal accidents in the United States. With recent advances in sensors and intelligent vehicular systems, there has been significant research on assessing driver behavior to improve driving experiences and road safety. This paper examines the various techniques used to analyze driver behavior using visual and vehicular data, providing an overview of the latest research in this field. The paper also discusses the challenges and open problems in the field and offers potential recommendations for future research. The survey concludes that integrating vision and vehicular information can significantly enhance the accuracy and effectiveness of driver behavior analysis, leading to improved safety measures and reduced traffic accidents.

This paper delves into the evolving relationship between humans and computers in the realm of programming. Historically, programming has been a dialogue where humans meticulously crafted communication to suit machine understanding, shaping the trajectory of computer science education. However, the advent of AI-based no-code platforms is revolutionizing this dynamic. Now, humans can converse in their natural language, expecting machines to interpret and act. This shift has profound implications for computer science education. As educators, it's imperative to integrate this new dynamic into curricula. In this paper, we've explored several pertinent research questions in this transformation, which demand continued inquiry and adaptation in our educational strategies.

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

北京阿比特科技有限公司