To make reinforcement learning more sample efficient, we need better credit assignment methods that measure an action's influence on future rewards. Building upon Hindsight Credit Assignment (HCA), we introduce Counterfactual Contribution Analysis (COCOA), a new family of model-based credit assignment algorithms. Our algorithms achieve precise credit assignment by measuring the contribution of actions upon obtaining subsequent rewards, by quantifying a counterfactual query: 'Would the agent still have reached this reward if it had taken another action?'. We show that measuring contributions w.r.t. rewarding states, as is done in HCA, results in spurious estimates of contributions, causing HCA to degrade towards the high-variance REINFORCE estimator in many relevant environments. Instead, we measure contributions w.r.t. rewards or learned representations of the rewarding objects, resulting in gradient estimates with lower variance. We run experiments on a suite of problems specifically designed to evaluate long-term credit assignment capabilities. By using dynamic programming, we measure ground-truth policy gradients and show that the improved performance of our new model-based credit assignment methods is due to lower bias and variance compared to HCA and common baselines. Our results demonstrate how modeling action contributions towards rewarding outcomes can be leveraged for credit assignment, opening a new path towards sample-efficient reinforcement learning.
Although neural networks have made remarkable advancements in various applications, they require substantial computational and memory resources. Network quantization is a powerful technique to compress neural networks, allowing for more efficient and scalable AI deployments. Recently, Re-parameterization has emerged as a promising technique to enhance model performance while simultaneously alleviating the computational burden in various computer vision tasks. However, the accuracy drops significantly when applying quantization on the re-parameterized networks. We identify that the primary challenge arises from the large variation in weight distribution across the original branches. To address this issue, we propose a coarse & fine weight splitting (CFWS) method to reduce quantization error of weight, and develop an improved KL metric to determine optimal quantization scales for activation. To the best of our knowledge, our approach is the first work that enables post-training quantization applicable on re-parameterized networks. For example, the quantized RepVGG-A1 model exhibits a mere 0.3% accuracy loss. The code is in //github.com/NeonHo/Coarse-Fine-Weight-Split.git
Neural networks are powerful tools in various applications, and quantifying their uncertainty is crucial for reliable decision-making. In the deep learning field, the uncertainties are usually categorized into aleatoric (data) and epistemic (model) uncertainty. In this paper, we point out that the existing popular variance attenuation method highly overestimates aleatoric uncertainty. To address this issue, we propose a new estimation method by actively de-noising the observed data \footnote{Source code available at \url{//github.com/wz16/DVA}.}. By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
In this paper, we introduce a new simple approach to developing and establishing the convergence of splitting methods for a large class of stochastic differential equations (SDEs), including additive, diagonal and scalar noise types. The central idea is to view the splitting method as a replacement of the driving signal of an SDE, namely Brownian motion and time, with a piecewise linear path that yields a sequence of ODEs $-$ which can be discretised to produce a numerical scheme. This new way of understanding splitting methods is inspired by, but does not use, rough path theory. We show that when the driving piecewise linear path matches certain iterated stochastic integrals of Brownian motion, then a high order splitting method can be obtained. We propose a general proof methodology for establishing the strong convergence of these approximations that is akin to the general framework of Milstein and Tretyakov. That is, once local error estimates are obtained for the splitting method, then a global rate of convergence follows. This approach can then be readily applied in future research on SDE splitting methods. By incorporating recently developed approximations for iterated integrals of Brownian motion into these piecewise linear paths, we propose several high order splitting methods for SDEs satisfying a certain commutativity condition. In our experiments, which include the Cox-Ingersoll-Ross model and additive noise SDEs (noisy anharmonic oscillator, stochastic FitzHugh-Nagumo model, underdamped Langevin dynamics), the new splitting methods exhibit convergence rates of $O(h^{3/2})$ and outperform schemes previously proposed in the literature.
As AI-bots continue to gain popularity due to their human-like traits and the intimacy they offer to users, their societal impact inevitably expands. This leads to the rising necessity for comprehensive studies to fully understand AI-bots and reveal their potential opportunities, drawbacks, and overall societal impact. With that in mind, this research conducted an extensive investigation into ChatGPT3, a renowned AI bot, aiming to assess the temporal reliability of its personality profile. Psychological questionnaires were administered to the chatbot on two separate occasions, followed by a comparison of the responses to human normative data. The findings revealed varying levels of agreement in chatbot's responses over time, with some scales displaying excellent agreement while others demonstrated poor agreement. Overall, Davinci-003 displayed a socially desirable and pro-social personality profile, particularly in the domain of communion. However, the underlying basis of the chatbot's responses-whether driven by conscious self reflection or predetermined algorithms-remains uncertain.
We use Stein characterisations to derive new moment-type estimators for the parameters of several multivariate distributions in the i.i.d. case; we also derive the asymptotic properties of these estimators. Our examples include the multivariate truncated normal distribution and several spherical distributions. The estimators are explicit and therefore provide an interesting alternative to the maximum-likelihood estimator. The quality of these estimators is assessed through competitive simulation studies in which we compare their behaviour to the performance of other estimators available in the literature.
With the proliferation of ever more complicated Deep Learning architectures, data synthesis is a highly promising technique to address the demand of data-hungry models. However, reliably assessing the quality of a 'synthesiser' model's output is an open research question with significant associated risks for high-stake domains. To address this challenge, we have designed a unique confident data synthesis algorithm that introduces statistical confidence guarantees through a novel extension of the Conformal Prediction framework. We support our proposed algorithm with theoretical proofs and an extensive empirical evaluation of five benchmark datasets. To show our approach's versatility on ubiquitous real-world challenges, the datasets were carefully selected for their variety of difficult characteristics: low sample count, class imbalance and non-separability, and privacy-sensitive data. In all trials, training sets extended with our confident synthesised data performed at least as well as the original, and frequently significantly improved Deep Learning performance by up to +65% F1-score.
In machine learning systems, privileged features refer to the features that are available during offline training but inaccessible for online serving. Previous studies have recognized the importance of privileged features and explored ways to tackle online-offline discrepancies. A typical practice is privileged features distillation (PFD): train a teacher model using all features (including privileged ones) and then distill the knowledge from the teacher model using a student model (excluding the privileged features), which is then employed for online serving. In practice, the pointwise cross-entropy loss is often adopted for PFD. However, this loss is insufficient to distill the ranking ability for CTR prediction. First, it does not consider the non-i.i.d. characteristic of the data distribution, i.e., other items on the same page significantly impact the click probability of the candidate item. Second, it fails to consider the relative item order ranked by the teacher model's predictions, which is essential to distill the ranking ability. To address these issues, we first extend the pointwise-based PFD to the listwise-based PFD. We then define the calibration-compatible property of distillation loss and show that commonly used listwise losses do not satisfy this property when employed as distillation loss, thus compromising the model's calibration ability, which is another important measure for CTR prediction. To tackle this dilemma, we propose Calibration-compatible LIstwise Distillation (CLID), which employs carefully-designed listwise distillation loss to achieve better ranking ability than the pointwise-based PFD while preserving the model's calibration ability. We theoretically prove it is calibration-compatible. Extensive experiments on public datasets and a production dataset collected from the display advertising system of Alibaba further demonstrate the effectiveness of CLID.
The stringent low-latency, high reliability, availability and resilience requirements of 6G use cases will present challenges to cloud providers. Currently, cloud providers lack simple, efficient, and secure implementation of provisioning solutions that meet these challenges. Multi-cloud federation is a promising approach. In this paper, we evaluate the application of private and public blockchain networks for multi-cloud federation. We compare the performance of blockchain-based federation in private and public blockchain networks and their integration with a production-ready orchestration solution. Our results show that the public blockchain needs approximately 91 seconds to complete the federation procedure compared to the 48 seconds in the private blockchain scenario.
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
Machine Learning has been the quintessential solution for many AI problems, but learning is still heavily dependent on the specific training data. Some learning models can be incorporated with a prior knowledge in the Bayesian set up, but these learning models do not have the ability to access any organised world knowledge on demand. In this work, we propose to enhance learning models with world knowledge in the form of Knowledge Graph (KG) fact triples for Natural Language Processing (NLP) tasks. Our aim is to develop a deep learning model that can extract relevant prior support facts from knowledge graphs depending on the task using attention mechanism. We introduce a convolution-based model for learning representations of knowledge graph entity and relation clusters in order to reduce the attention space. We show that the proposed method is highly scalable to the amount of prior information that has to be processed and can be applied to any generic NLP task. Using this method we show significant improvement in performance for text classification with News20, DBPedia datasets and natural language inference with Stanford Natural Language Inference (SNLI) dataset. We also demonstrate that a deep learning model can be trained well with substantially less amount of labeled training data, when it has access to organised world knowledge in the form of knowledge graph.