As Graph Neural Networks (GNNs) become popular, libraries like PyTorch-Geometric (PyG) and Deep Graph Library (DGL) are proposed; these libraries have emerged as the de facto standard for implementing GNNs because they provide graph-oriented APIs and are purposefully designed to manage the inherent sparsity and irregularity in graph structures. However, these libraries show poor scalability on multi-core processors, which under-utilizes the available platform resources and limits the performance. This is because GNN training is a resource-intensive workload with high volume of irregular data accessing, and existing libraries fail to utilize the memory bandwidth efficiently. To address this challenge, we propose ARGO, a novel runtime system for GNN training that offers scalable performance. ARGO exploits multi-processing and core-binding techniques to improve platform resource utilization. We further develop an auto-tuner that searches for the optimal configuration for multi-processing and core-binding. The auto-tuner works automatically, making it completely transparent from the user. Furthermore, the auto-tuner allows ARGO to adapt to various platforms, GNN models, datasets, etc. We evaluate ARGO on two representative GNN models and four widely-used datasets on two platforms. With the proposed autotuner, ARGO is able to select a near-optimal configuration by exploring only 5% of the design space. ARGO speeds up state-of-the-art GNN libraries by up to 5.06x and 4.54x on a four-socket Ice Lake machine with 112 cores and a two-socket Sapphire Rapids machine with 64 cores, respectively. Finally, ARGO can seamlessly integrate into widely-used GNN libraries (e.g., DGL, PyG) with few lines of code and speed up GNN training.
Education is a right of all, however, every individual is different than others. Teachers in post-communism era discover inherent individualism to equally train all towards job market of fourth industrial revolution. We can consider scenario of ethnic minority education in academic practices. Ethnic minority group has grown in their own culture and would prefer to be taught in their native way. We have formulated such linguistic anthropology(how people learn)based engagement as semi-supervised problem. Then, we have developed an conditional deep generative adversarial network algorithm namely LA-GAN to classify linguistic ethnographic features in student engagement. Theoretical justification proves the objective, regularization and loss function of our semi-supervised adversarial model. Survey questions are prepared to reach some form of assumptions about z-generation and ethnic minority group, whose learning style, learning approach and preference are our main area of interest.
There have been emerging research interest and advances in speech-to-speech translation (S2ST), translating utterances from one language to another. This work proposes Multitask Speech Language Model (MSLM), which is a decoder-only speech language model trained in a multitask setting. Without reliance on text training data, our model is able to support multilingual S2ST with speaker style preserved.
Recent research on Simultaneous Localization and Mapping (SLAM) based on implicit representation has shown promising results in indoor environments. However, there are still some challenges: the limited scene representation capability of implicit encodings, the uncertainty in the rendering process from implicit representations, and the disruption of consistency by dynamic objects. To address these challenges, we propose a real-time dynamic visual SLAM system based on local-global fusion neural implicit representation, named DVN-SLAM. To improve the scene representation capability, we introduce a local-global fusion neural implicit representation that enables the construction of an implicit map while considering both global structure and local details. To tackle uncertainties arising from the rendering process, we design an information concentration loss for optimization, aiming to concentrate scene information on object surfaces. The proposed DVN-SLAM achieves competitive performance in localization and mapping across multiple datasets. More importantly, DVN-SLAM demonstrates robustness in dynamic scenes, a trait that sets it apart from other NeRF-based methods.
We propose NEDS-SLAM, an Explicit Dense semantic SLAM system based on 3D Gaussian representation, that enables robust 3D semantic mapping, accurate camera tracking, and high-quality rendering in real-time. In the system, we propose a Spatially Consistent Feature Fusion model to reduce the effect of erroneous estimates from pre-trained segmentation head on semantic reconstruction, achieving robust 3D semantic Gaussian mapping. Additionally, we employ a lightweight encoder-decoder to compress the high-dimensional semantic features into a compact 3D Gaussian representation, mitigating the burden of excessive memory consumption. Furthermore, we leverage the advantage of 3D Gaussian splatting, which enables efficient and differentiable novel view rendering, and propose a Virtual Camera View Pruning method to eliminate outlier GS points, thereby effectively enhancing the quality of scene representations. Our NEDS-SLAM method demonstrates competitive performance over existing dense semantic SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in 3D dense semantic mapping.
Large Language Models (LLMs) demonstrate superior performance in generative scenarios and have attracted widespread attention. Among them, stylized dialogue generation is essential in the context of LLMs for building intelligent and engaging dialogue agent. However the ability of LLMs is data-driven and limited by data bias, leading to poor performance on specific tasks. In particular, stylized dialogue generation suffers from a severe lack of supervised data. Furthermore, although many prompt-based methods have been proposed to accomplish specific tasks, their performance in complex real-world scenarios involving a wide variety of dialog styles further enhancement. In this work, we first introduce a stylized dialogue dataset StyleEval with 38 styles by leveraging the generative power of LLMs comprehensively, which has been carefully constructed with rigorous human-led quality control. Based on this, we propose the stylized dialogue framework StyleChat via recitation-augmented memory strategy and multi-task style learning strategy to promote generalization ability. To evaluate the effectiveness of our approach, we created a test benchmark that included both a generation task and a choice task to comprehensively evaluate trained models and assess whether styles and preferences are remembered and understood. Experimental results show that our proposed framework StyleChat outperforms all the baselines and helps to break the style boundary of LLMs.
The view synchronization problem lies at the heart of many Byzantine Fault Tolerant (BFT) State Machine Replication (SMR) protocols in the partial synchrony model, since these protocols are usually based on views. Liveness is guaranteed if honest processors spend a sufficiently long time in the same view during periods of synchrony, and if the leader of the view is honest. Ensuring that these conditions occur, known as Byzantine View Synchronization (BVS), has turned out to be the performance bottleneck of many BFT SMR protocols. A recent line of work has shown that, by using an appropriate view synchronization protocol, BFT SMR protocols can achieve $O(n^2)$ communication complexity in the worst case after GST, thereby finally matching the lower bound established by Dolev and Reischuk in 1985. However, these protocols suffer from two major issues: (1) When implemented so as to be optimistically responsive, even a single Byzantine processor may infinitely often cause $\Omega(n\Delta)$ latency between consecutive consensus decisions. (2) Even in the absence of Byzantine action, infinitely many views require honest processors to send $\Omega(n^2)$ messages. Here, we present Lumiere, an optimistically responsive BVS protocol which maintains optimal worst-case communication complexity while simultaneously addressing the two issues above: for the first time, Lumiere enables BFT consensus solutions in the partial synchrony setting that have $O(n^2)$ worst-case communication complexity, and that eventually always (i.e., except for a small constant number of "warmup" decisions) have communication complexity and latency which is linear in the number of actual faults in the execution.
In recent years, Neural Radiance Fields (NeRFs) have demonstrated significant potential in encoding highly-detailed 3D geometry and environmental appearance, positioning themselves as a promising alternative to traditional explicit representation for 3D scene reconstruction. However, the predominant reliance on RGB imaging presupposes ideal lighting conditions: a premise frequently unmet in robotic applications plagued by poor lighting or visual obstructions. This limitation overlooks the capabilities of infrared (IR) cameras, which excel in low-light detection and present a robust alternative under such adverse scenarios. To tackle these issues, we introduce Thermal-NeRF, the first method that estimates a volumetric scene representation in the form of a NeRF solely from IR imaging. By leveraging a thermal mapping and structural thermal constraint derived from the thermal characteristics of IR imaging, our method showcasing unparalleled proficiency in recovering NeRFs in visually degraded scenes where RGB-based methods fall short. We conduct extensive experiments to demonstrate that Thermal-NeRF can achieve superior quality compared to existing methods. Furthermore, we contribute a dataset for IR-based NeRF applications, paving the way for future research in IR NeRF reconstruction.
In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.