亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deploying Large Language Models (LLMs) in streaming applications that involve long contexts, particularly for extended dialogues and text analysis, is of paramount importance but presents two significant challenges. Firstly, the memory consumption is substantial during the decoding phase due to the caching of Key and Value states (KV) of previous tokens. Secondly, attention computation is time-consuming with a time complexity of $O(n^2)$ for the generation of each token. In recent OpenAI DevDay (Nov 6, 2023), OpenAI released a new model that is able to support a 128K-long document, in our paper, we focus on the memory-efficient issue when context length $n$ is much greater than 128K ($n \gg 2^d$). Considering a single-layer self-attention with Query, Key, and Value matrices $Q, K, V \in \mathbb{R}^{n \times d}$, the polynomial method approximates the attention output $T \in \mathbb{R}^{n \times d}$. It accomplishes this by constructing $U_1, U_2 \in \mathbb{R}^{n \times t}$ to expedite attention ${\sf Attn}(Q, K, V)$ computation within $n^{1+o(1)}$ time executions. Despite this, storing the Key and Value matrices $K, V \in \mathbb{R}^{n \times d}$ still necessitates $O( n d)$ space, leading to significant memory usage. In response to these challenges, we introduce a new algorithm that only reads one pass of the data in streaming fashion. This method employs sublinear space $o(n)$ to store three sketch matrices, alleviating the need for exact $K, V$ storage. Notably, our algorithm exhibits exceptional memory-efficient performance with super-long tokens. As the token length $n$ increases, our error guarantee diminishes while the memory usage remains nearly constant. This unique attribute underscores the potential of our technique in efficiently handling LLMs in streaming applications.

相關內容

Reasoning, a crucial aspect of NLP research, has not been adequately addressed by prevailing models including Large Language Model. Conversation reasoning, as a critical component of it, remains largely unexplored due to the absence of a well-designed cognitive model. In this paper, inspired by intuition theory on conversation cognition, we develop a conversation cognitive model (CCM) that explains how each utterance receives and activates channels of information recursively. Besides, we algebraically transformed CCM into a structural causal model (SCM) under some mild assumptions, rendering it compatible with various causal discovery methods. We further propose a probabilistic implementation of the SCM for utterance-level relation reasoning. By leveraging variational inference, it explores substitutes for implicit causes, addresses the issue of their unobservability, and reconstructs the causal representations of utterances through the evidence lower bounds. Moreover, we constructed synthetic and simulated datasets incorporating implicit causes and complete cause labels, alleviating the current situation where all available datasets are implicit-causes-agnostic. Extensive experiments demonstrate that our proposed method significantly outperforms existing methods on synthetic, simulated, and real-world datasets. Finally, we analyze the performance of CCM under latent confounders and propose theoretical ideas for addressing this currently unresolved issue.

The Vision Transformer (ViT) demonstrates exceptional performance in various computer vision tasks. Attention is crucial for ViT to capture complex wide-ranging relationships among image patches, allowing the model to weigh the importance of image patches and aiding our understanding of the decision-making process. However, when utilizing the attention of ViT as evidence in high-stakes decision-making tasks such as medical diagnostics, a challenge arises due to the potential of attention mechanisms erroneously focusing on irrelevant regions. In this study, we propose a statistical test for ViT's attentions, enabling us to use the attentions as reliable quantitative evidence indicators for ViT's decision-making with a rigorously controlled error rate. Using the framework called selective inference, we quantify the statistical significance of attentions in the form of p-values, which enables the theoretically grounded quantification of the false positive detection probability of attentions. We demonstrate the validity and the effectiveness of the proposed method through numerical experiments and applications to brain image diagnoses.

Multivariate Hawkes Processes (MHPs) are a class of point processes that can account for complex temporal dynamics among event sequences. In this work, we study the accuracy and computational efficiency of three classes of algorithms which, while widely used in the context of Bayesian inference, have rarely been applied in the context of MHPs: stochastic gradient expectation-maximization, stochastic gradient variational inference and stochastic gradient Langevin Monte Carlo. An important contribution of this paper is a novel approximation to the likelihood function that allows us to retain the computational advantages associated with conjugate settings while reducing approximation errors associated with the boundary effects. The comparisons are based on various simulated scenarios as well as an application to the study the risk dynamics in the Standard & Poor's 500 intraday index prices among its 11 sectors.

Adapting the User Interface (UI) of software systems to user requirements and the context of use is challenging. The main difficulty consists of suggesting the right adaptation at the right time in the right place in order to make it valuable for end-users. We believe that recent progress in Machine Learning techniques provides useful ways in which to support adaptation more effectively. In particular, Reinforcement learning (RL) can be used to personalise interfaces for each context of use in order to improve the user experience (UX). However, determining the reward of each adaptation alternative is a challenge in RL for UI adaptation. Recent research has explored the use of reward models to address this challenge, but there is currently no empirical evidence on this type of model. In this paper, we propose a confirmatory study design that aims to investigate the effectiveness of two different approaches for the generation of reward models in the context of UI adaptation using RL: (1) by employing a reward model derived exclusively from predictive Human-Computer Interaction (HCI) models (HCI), and (2) by employing predictive HCI models augmented by Human Feedback (HCI&HF). The controlled experiment will use an AB/BA crossover design with two treatments: HCI and HCI&HF. We shall determine how the manipulation of these two treatments will affect the UX when interacting with adaptive user interfaces (AUI). The UX will be measured in terms of user engagement and user satisfaction, which will be operationalized by means of predictive HCI models and the Questionnaire for User Interaction Satisfaction (QUIS), respectively. By comparing the performance of two reward models in terms of their ability to adapt to user preferences with the purpose of improving the UX, our study contributes to the understanding of how reward modelling can facilitate UI adaptation using RL.

In numerous applications, binary reactions or event counts are observed and stored within high-order tensors. Tensor decompositions (TDs) serve as a powerful tool to handle such high-dimensional and sparse data. However, many traditional TDs are explicitly or implicitly designed based on the Gaussian distribution, which is unsuitable for discrete data. Moreover, most TDs rely on predefined multi-linear structures, such as CP and Tucker formats. Therefore, they may not be effective enough to handle complex real-world datasets. To address these issues, we propose ENTED, an \underline{E}fficient \underline{N}onparametric \underline{TE}nsor \underline{D}ecomposition for binary and count tensors. Specifically, we first employ a nonparametric Gaussian process (GP) to replace traditional multi-linear structures. Next, we utilize the \pg augmentation which provides a unified framework to establish conjugate models for binary and count distributions. Finally, to address the computational issue of GPs, we enhance the model by incorporating sparse orthogonal variational inference of inducing points, which offers a more effective covariance approximation within GPs and stochastic natural gradient updates for nonparametric models. We evaluate our model on several real-world tensor completion tasks, considering binary and count datasets. The results manifest both better performance and computational advantages of the proposed model.

Knowledge distillation (KD) is used to enhance automatic speaker verification performance by ensuring consistency between large teacher networks and lightweight student networks at the embedding level or label level. However, the conventional label-level KD overlooks the significant knowledge from non-target speakers, particularly their classification probabilities, which can be crucial for automatic speaker verification. In this paper, we first demonstrate that leveraging a larger number of training non-target speakers improves the performance of automatic speaker verification models. Inspired by this finding about the importance of non-target speakers' knowledge, we modified the conventional label-level KD by disentangling and emphasizing the classification probabilities of non-target speakers during knowledge distillation. The proposed method is applied to three different student model architectures and achieves an average of 13.67% improvement in EER on the VoxCeleb dataset compared to embedding-level and conventional label-level KD methods.

With the recent advancement of Large Language Models (LLMs), generating functionally correct code has become less complicated for a wide array of developers. While using LLMs has sped up the functional development process, it poses a heavy risk to code security. Code generation with proper security measures using LLM is a significantly more challenging task than functional code generation. Security measures may include adding a pair of lines of code with the original code, consisting of null pointer checking or prepared statements for SQL injection prevention. Currently, available code repair LLMs generate code repair by supervised fine-tuning, where the model looks at cross-entropy loss. However, the original and repaired codes are mostly similar in functionality and syntactically, except for a few (1-2) lines, which act as security measures. This imbalance between the lines needed for security measures and the functional code enforces the supervised fine-tuned model to prioritize generating functional code without adding proper security measures, which also benefits the model by resulting in minimal loss. Therefore, in this work, for security hardening and strengthening of generated code from LLMs, we propose a reinforcement learning-based method for program-specific repair with the combination of semantic and syntactic reward mechanisms that focus heavily on adding security and functional measures in the code, respectively.

Recent code large language models (LLMs) have shown promising performance in generating standalone functions but face limitations in repository-level code generation due to their lack of awareness of repository-level dependencies (e.g., user-defined attributes), resulting in dependency errors such as undefined-variable and no-member errors. In this work, we introduce ToolGen, an approach that integrates autocompletion tools into the code LLM generation process to address these dependencies. ToolGen comprises two main phases: Data Augmentation and Model Fine-tuning (Offline), and Tool-integrated Code Generation (Online). During the offline phase, ToolGen augments functions within a given code corpus with a special mark token, indicating positions to trigger autocompletion tools. These augmented functions, along with their corresponding docstrings, are then used to fine-tune a selected code LLM. In the online phase, ToolGen iteratively generates functions by predicting tokens step-by-step using the fine-tuned LLM. Whenever a mark token is encountered, ToolGen invokes the autocompletion tool to suggest code completions and selects the most appropriate one. We conduct comprehensive experiments to evaluate ToolGen's effectiveness in repository-level code generation. To facilitate this evaluation, we create a benchmark comprising 680 real-world code repositories and introduce two new repository-level metrics: Dependency Coverage and Success Rate. The results demonstrate that ToolGen significantly improves dependency coverage by 15.2% to 45.8% and success rates by 10.9% to 42.2% across three distinct code LLMs, while maintaining competitive performance in widely-recognized similarity metrics. Furthermore, our generalizability evaluation confirms ToolGen's consistent performance when applied to diverse code LLMs, including various model architectures and scales.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司