亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a generalization of the classical linear factor model, generalized latent factor models are useful for analyzing multivariate data of different types, including binary choices and counts. This paper proposes an information criterion to determine the number of factors in generalized latent factor models. The consistency of the proposed information criterion is established under a high-dimensional setting where both the sample size and the number of manifest variables grow to infinity, and data may have many missing values. An error bound is established for the parameter estimates, which plays an important role in establishing the consistency of the proposed information criterion. This error bound improves several existing results and may be of independent theoretical interest. We evaluate the proposed method by a simulation study and an application to Eysenck's personality questionnaire.

相關內容

We consider a Johnson-N\'ed\'elec FEM-BEM coupling, which is a direct and non-symmetric coupling of finite and boundary element methods, in order to solve interface problems for the magnetostatic Maxwell's equations with the magnetic vector potential ansatz. In the FEM-domain, equations may be non-linear, whereas they are exclusively linear in the BEM-part to guarantee the existence of a fundamental solution. First, the weak problem is formulated in quotient spaces to avoid resolving to a saddle point problem. Second, we establish in this setting well-posedness of the arising problem using the framework of Lipschitz and strongly monotone operators as well as a stability result for a special type of non-linearity, which is typically considered in magnetostatic applications. Then, the discretization is performed in the isogeometric context, i.e., the same type of basis functions that are used for geometry design are considered as ansatz functions for the discrete setting. In particular, NURBS are employed for geometry considerations, and B-Splines, which can be understood as a special type of NURBS, for analysis purposes. In this context, we derive a priori estimates w.r.t. h-refinement, and point out to an interesting behavior of BEM, which consists in an amelioration of the convergence rates, when a functional of the solution is evaluated in the exterior BEM-domain. This improvement may lead to a doubling of the convergence rate under certain assumptions. Finally, we end the paper with a numerical example to illustrate the theoretical results, along with a conclusion and an outlook.

We investigate saddlepoint approximations applied to the score test statistic in genome-wide association studies with binary phenotypes. The inaccuracy in the normal approximation of the score test statistic increases with increasing sample imbalance and with decreasing minor allele count. Applying saddlepoint approximations to the score test statistic distribution greatly improve the accuracy, even far out in the tail of the distribution. By using exact results for an intercept model and binary covariate model, as well as simulations for models with nuisance parameters, we emphasize the need for continuity corrections in order to achieve valid $p$-values. The performance of the saddlepoint approximations is evaluated by overall and conditional type I error rate on simulated data. We investigate the methods further by using data from UK Biobank with skin and soft tissue infections as phenotype, using both common and rare variants. The analysis confirms that continuity correction is important particularly for rare variants, and that the normal approximation gives a highly inflated type I error rate for case imbalance.

We develop a post-selective Bayesian framework to jointly and consistently estimate parameters in group-sparse linear regression models. After selection with the Group LASSO (or generalized variants such as the overlapping, sparse, or standardized Group LASSO), uncertainty estimates for the selected parameters are unreliable in the absence of adjustments for selection bias. Existing post-selective approaches are limited to uncertainty estimation for (i) real-valued projections onto very specific selected subspaces for the group-sparse problem, (ii) selection events categorized broadly as polyhedral events that are expressible as linear inequalities in the data variables. Our Bayesian methods address these gaps by deriving a likelihood adjustment factor, and an approximation thereof, that eliminates bias from selection. Paying a very nominal price for this adjustment, experiments on simulated data, and data from the Human Connectome Project demonstrate the efficacy of our methods for a joint estimation of group-sparse parameters and their uncertainties post selection.

We present generalized additive latent and mixed models (GALAMMs) for analysis of clustered data with latent and observed variables depending smoothly on observed variables. A profile likelihood algorithm is proposed, and we derive asymptotic standard errors of both smooth and parametric terms. The work was motivated by applications in cognitive neuroscience, and we show how GALAMMs can successfully model the complex lifespan trajectory of latent episodic memory, along with a discrepant trajectory of working memory, as well as the effect of latent socioeconomic status on hippocampal development. Simulation experiments suggest that model estimates are accurate even with moderate sample sizes.

The efficient estimation of an approximate model order is very important for real applications with multi-dimensional data if the observed low-rank data is corrupted by additive noise. In this paper, we present a novel robust method for model order estimation of noise-corrupted multi-dimensional low-rank data based on the LineAr Regression of Global Eigenvalues (LaRGE). The LaRGE method uses the multi-linear singular values obtained from the HOSVD of the measurement tensor to construct global eigenvalues. In contrast to the Modified Exponential Test (EFT) that also exploits the approximate exponential profile of the noise eigenvalues, LaRGE does not require the calculation of the probability of false alarm. Moreover, LaRGE achieves a significantly improved performance in comparison with popular state-of-the-art methods. It is well suited for the analysis of biomedical data. The excellent performance of the LaRGE method is illustrated via simulations and results obtained from EEG recordings.

In this chapter, we show how to efficiently model high-dimensional extreme peaks-over-threshold events over space in complex non-stationary settings, using extended latent Gaussian Models (LGMs), and how to exploit the fitted model in practice for the computation of long-term return levels. The extended LGM framework assumes that the data follow a specific parametric distribution, whose unknown parameters are transformed using a multivariate link function and are then further modeled at the latent level in terms of fixed and random effects that have a joint Gaussian distribution. In the extremal context, we here assume that the data level distribution is described in terms of a Poisson point process likelihood, motivated by asymptotic extreme-value theory, and which conveniently exploits information from all threshold exceedances. This contrasts with the more common data-wasteful approach based on block maxima, which are typically modeled with the generalized extreme-value (GEV) distribution. When conditional independence can be assumed at the data level and latent random effects have a sparse probabilistic structure, fast approximate Bayesian inference becomes possible in very high dimensions, and we here present the recently proposed inference approach called "Max-and-Smooth", which provides exceptional speed-up compared to alternative methods. The proposed methodology is illustrated by application to satellite-derived precipitation data over Saudi Arabia, obtained from the Tropical Rainfall Measuring Mission, with 2738 grid cells and about 20 million spatio-temporal observations in total. Our fitted model captures the spatial variability of extreme precipitation satisfactorily and our results show that the most intense precipitation events are expected near the south-western part of Saudi Arabia, along the Red Sea coastline.

In the study of causal inference, statisticians show growing interest in estimating and analyzing heterogeneity in causal effects in observational studies. However, there usually exists a trade-off between accuracy and interpretability when developing a desirable estimator for treatment effects. To make efforts to address the issue, we propose a non-parametric framework for estimating the Conditional Average Treatment Effect (CATE) function in this paper. The framework integrates two components: (i) leverage the joint use of propensity and prognostic scores in a matching algorithm to obtain a proxy of the heterogeneous treatment effects for each observation, (ii) utilize non-parametric regression trees to construct an estimator for the CATE function conditioning on the two scores. The method naturally stratifies treatment effects into subgroups over a 2d grid whose axis are the propensity and prognostic scores. We conduct benchmark experiments on multiple simulated data and demonstrate clear advantages of the proposed estimator over state of the art methods. We also evaluate empirical performance in real-life settings, using two observational social studies in the United States, and interpret policy implications following the numerical results.

In this work, we study the transfer learning problem under high-dimensional generalized linear models (GLMs), which aim to improve the fit on target data by borrowing information from useful source data. Given which sources to transfer, we propose an oracle algorithm and derive its $\ell_2$-estimation error bounds. The theoretical analysis shows that under certain conditions, when the target and source are sufficiently close to each other, the estimation error bound could be improved over that of the classical penalized estimator using only target data. When we don't know which sources to transfer, an algorithm-free transferable source detection approach is introduced to detect informative sources. The detection consistency is proved under the high-dimensional GLM transfer learning setting. Extensive simulations and a real-data experiment verify the effectiveness of our algorithms.

We present a generalization of the Cauchy/Lorentzian, Geman-McClure, Welsch/Leclerc, generalized Charbonnier, Charbonnier/pseudo-Huber/L1-L2, and L2 loss functions. By introducing robustness as a continous parameter, our loss function allows algorithms built around robust loss minimization to be generalized, which improves performance on basic vision tasks such as registration and clustering. Interpreting our loss as the negative log of a univariate density yields a general probability distribution that includes normal and Cauchy distributions as special cases. This probabilistic interpretation enables the training of neural networks in which the robustness of the loss automatically adapts itself during training, which improves performance on learning-based tasks such as generative image synthesis and unsupervised monocular depth estimation, without requiring any manual parameter tuning.

Generative models (GMs) such as Generative Adversary Network (GAN) and Variational Auto-Encoder (VAE) have thrived these years and achieved high quality results in generating new samples. Especially in Computer Vision, GMs have been used in image inpainting, denoising and completion, which can be treated as the inference from observed pixels to corrupted pixels. However, images are hierarchically structured which are quite different from many real-world inference scenarios with non-hierarchical features. These inference scenarios contain heterogeneous stochastic variables and irregular mutual dependences. Traditionally they are modeled by Bayesian Network (BN). However, the learning and inference of BN model are NP-hard thus the number of stochastic variables in BN is highly constrained. In this paper, we adapt typical GMs to enable heterogeneous learning and inference in polynomial time.We also propose an extended autoregressive (EAR) model and an EAR with adversary loss (EARA) model and give theoretical results on their effectiveness. Experiments on several BN datasets show that our proposed EAR model achieves the best performance in most cases compared to other GMs. Except for black box analysis, we've also done a serial of experiments on Markov border inference of GMs for white box analysis and give theoretical results.

北京阿比特科技有限公司