Topological signal processing (TSP) over simplicial complexes typically assumes observations associated with the simplicial complexes are real scalars. In this paper, we develop TSP theories for the case where observations belong to abelian groups more general than real numbers, including function spaces that are commonly used to represent time-varying signals. Our approach generalizes the Hodge decomposition and allows for signal processing tasks to be performed on these more complex observations. We propose a unified and flexible framework for TSP that expands its applicability to a wider range of signal processing applications. Numerical results demonstrate the effectiveness of this approach and provide a foundation for future research in this area.
We consider the problem of sequentially optimizing a time-varying objective function using time-varying Bayesian optimization (TVBO). Here, the key challenge is the exploration-exploitation trade-off under time variations. Current approaches to TVBO require prior knowledge of a constant rate of change. However, in practice, the rate of change is usually unknown. We propose an event-triggered algorithm, ET-GP-UCB, that treats the optimization problem as static until it detects changes in the objective function online and then resets the dataset. This allows the algorithm to adapt to realized temporal changes without the need for prior knowledge. The event-trigger is based on probabilistic uniform error bounds used in Gaussian process regression. We provide regret bounds for ET-GP-UCB and show in numerical experiments that it outperforms state-of-the-art algorithms on synthetic and real-world data. Furthermore, these results demonstrate that ET-GP-UCB is readily applicable to various settings without tuning hyperparameters.
This paper examines asymmetric and time-varying dependency structures between financial returns, using a novel approach consisting of a combination of regime-switching models and the local Gaussian correlation (LGC). We propose an LGC-based bootstrap test for whether the dependence structure in financial returns across different regimes is equal. We examine this test in a Monte Carlo study, where it shows good level and power properties. We argue that this approach is more intuitive than competing approaches, typically combining regime-switching models with copula theory. Furthermore, the LGC is a semi-parametric approach, hence avoids any parametric specification of the dependence structure. We illustrate our approach using returns from the US-UK stock markets and the US stock and government bond markets. Using a two-regime model for the US-UK stock returns, the test rejects equality of the dependence structure in the two regimes. Furthermore, we find evidence of lower tail dependence in the regime associated with financial downturns in the LGC structure. For a three-regime model fitted to US stock and bond returns, the test rejects equality of the dependence structures between all regime pairs. Furthermore, we find that the LGC has a primarily positive relationship in the time period 1980-2000, mostly a negative relationship from 2000 and onwards. In addition, the regime associated with bear markets indicates less, but asymmetric dependence, clearly documenting the loss of diversification benefits in times of crisis.
This paper presents new methods for analyzing and evaluating generalized plans that can solve broad classes of related planning problems. Although synthesis and learning of generalized plans has been a longstanding goal in AI, it remains challenging due to fundamental gaps in methods for analyzing the scope and utility of a given generalized plan. This paper addresses these gaps by developing a new conceptual framework along with proof techniques and algorithmic processes for assessing termination and goal-reachability related properties of generalized plans. We build upon classic results from graph theory to decompose generalized plans into smaller components that are then used to derive hierarchical termination arguments. These methods can be used to determine the utility of a given generalized plan, as well as to guide the synthesis and learning processes for generalized plans. We present theoretical as well as empirical results illustrating the scope of this new approach. Our analysis shows that this approach significantly extends the class of generalized plans that can be assessed automatically, thereby reducing barriers in the synthesis and learning of reliable generalized plans.
As an efficient alternative to conventional full finetuning, parameter-efficient finetuning (PEFT) is becoming the prevailing method to adapt pretrained language models. In PEFT, a lightweight module is learned on each dataset while the underlying pretrained language model remains unchanged, resulting in multiple compact modules representing diverse skills when applied to various domains and tasks. In this paper, we propose to compose these parameter-efficient modules through linear arithmetic operations in the weight space, thereby integrating different module capabilities. Specifically, we first define addition and negation operators for the module, and then further compose these two basic operators to perform flexible arithmetic. Our approach requires \emph{no additional training} and enables highly flexible module composition. We apply different arithmetic operations to compose the parameter-efficient modules for (1) distribution generalization, (2) multi-tasking, (3) unlearning, and (4) domain transfer. Additionally, we extend our approach to detoxify Alpaca-LoRA, the latest instruction-tuned large language model based on LLaMA. Empirical results demonstrate that our approach produces new and effective parameter-efficient modules that significantly outperform existing ones across all settings.
In reinforcement learning (RL), sparse rewards can present a significant challenge. Fortunately, expert actions can be utilized to overcome this issue. However, acquiring explicit expert actions can be costly, and expert observations are often more readily available. This paper presents a new approach that uses expert observations for learning in robot manipulation tasks with sparse rewards from pixel observations. In particular, our technique involves using expert observations as intermediate visual goals for a goal-conditioned RL agent, enabling it to complete a task by successively reaching a series of goals. We demonstrate the efficacy of our method in five challenging block construction tasks in simulation and show that when combined with two state-of-the-art agents, our approach can significantly improve their performance while requiring 4-20 times fewer expert actions during training. Moreover, our method is also superior to a hierarchical baseline.
We present a method to construct signatures of periodic-like data. Based on topological considerations, our construction encodes information about the order and values of local extrema. Its main strength is robustness to reparametrisation of the observed signal, so that it depends only on the form of the periodic function. The signature converges as the observation contains increasingly many periods. We show that it can be estimated from the observation of a single time series using bootstrap techniques.
The utilization of finite field multipliers is pervasive in contemporary digital systems, with hardware implementation for bit parallel operation often necessitating millions of logic gates. However, various digital design issues, whether natural or stemming from soft errors, can result in gate malfunction, ultimately leading to erroneous multiplier outputs. Thus, to prevent susceptibility to error, it is imperative to employ an effective finite field multiplier implementation that boasts a robust fault detection capability. This study proposes a novel fault detection scheme for a recent bit-parallel polynomial basis multiplier over GF(2m), intended to achieve optimal fault detection performance for finite field multipliers while simultaneously maintaining a low-complexity implementation, a favored attribute in resource-constrained applications like smart cards. The primary concept behind the proposed approach is centered on the implementation of a BCH decoder that utilizes re-encoding technique and FIBM algorithm in its first and second sub-modules, respectively. This approach serves to address hardware complexity concerns while also making use of Berlekamp-Rumsey-Solomon (BRS) algorithm and Chien search method in the third sub-module of the decoder to effectively locate errors with minimal delay. The results of our synthesis indicate that our proposed error detection and correction architecture for a 45-bit multiplier with 5-bit errors achieves a 37% and 49% reduction in critical path delay compared to existing designs. Furthermore, the hardware complexity associated with a 45-bit multiplicand that contains 5 errors is confined to a mere 80%, which is significantly lower than the most exceptional BCH-based fault recognition methodologies, including TMR, Hamming's single error correction, and LDPC-based procedures within the realm of finite field multiplication.
We study the asymptotic generalization of an overparameterized linear model for multiclass classification under the Gaussian covariates bi-level model introduced in Subramanian et al.~'22, where the number of data points, features, and classes all grow together. We fully resolve the conjecture posed in Subramanian et al.~'22, matching the predicted regimes for generalization. Furthermore, our new lower bounds are akin to an information-theoretic strong converse: they establish that the misclassification rate goes to 0 or 1 asymptotically. One surprising consequence of our tight results is that the min-norm interpolating classifier can be asymptotically suboptimal relative to noninterpolating classifiers in the regime where the min-norm interpolating regressor is known to be optimal. The key to our tight analysis is a new variant of the Hanson-Wright inequality which is broadly useful for multiclass problems with sparse labels. As an application, we show that the same type of analysis can be used to analyze the related multilabel classification problem under the same bi-level ensemble.
The estimation of unknown parameters in simulations, also known as calibration, is crucial for practical management of epidemics and prediction of pandemic risk. A simple yet widely used approach is to estimate the parameters by minimizing the sum of the squared distances between actual observations and simulation outputs. It is shown in this paper that this method is inefficient, particularly when the epidemic models are developed based on certain simplifications of reality, also known as imperfect models which are commonly used in practice. To address this issue, a new estimator is introduced that is asymptotically consistent, has a smaller estimation variance than the least squares estimator, and achieves the semiparametric efficiency. Numerical studies are performed to examine the finite sample performance. The proposed method is applied to the analysis of the COVID-19 pandemic for 20 countries based on the SEIR (Susceptible-Exposed-Infectious-Recovered) model with both deterministic and stochastic simulations. The estimation of the parameters, including the basic reproduction number and the average incubation period, reveal the risk of disease outbreaks in each country and provide insights to the design of public health interventions.
Command, Control, Communication, and Intelligence (C3I) system is a kind of system-of-system that integrates computing machines, sensors, and communication networks. C3I systems are increasingly used in critical civil and military operations for achieving information superiority, assurance, and operational efficacy. C3I systems are no exception to the traditional systems facing widespread cyber-threats. However, the sensitive nature of the application domain (e.g., military operations) of C3I systems makes their security a critical concern. For instance, a cyber-attack on military installations can have detrimental impacts on national security. Therefore, in this paper, we review the state-of-the-art on the security of C3I systems. In particular, this paper aims to identify the security vulnerabilities, attack vectors, and countermeasures for C3I systems. We used the well-known systematic literature review method to select and review 77 studies on the security of C3I systems. Our review enabled us to identify 27 vulnerabilities, 22 attack vectors, and 62 countermeasures for C3I systems. This review has also revealed several areas for future research and identified key lessons with regards to C3I systems' security.