亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Smart contracts are susceptible to various security issues, among which access control (AC) vulnerabilities are particularly critical. While existing research has proposed multiple detection tools, the automatic and appropriate repair of AC vulnerabilities in smart contracts remains a challenge. Unlike commonly supported vulnerability types by existing repair tools, such as reentrancy, which are usually fixed by template-based approaches, the main obstacle of AC lies in identifying the appropriate roles or permissions amid a long list of non-AC-related source code to generate proper patch code, a task that demands human-level intelligence. Leveraging recent advancements in large language models (LLMs), we employ the state-of-the-art GPT-4 model and enhance it with a novel approach called ACFIX. The key insight is that we can mine common AC practices for major categories of code functionality and use them to guide LLMs in fixing code with similar functionality. To this end, ACFIX involves both offline and online phases. First, during the offline phase, ACFIX mines a taxonomy of common Role-based Access Control (RBAC) practices from 344,251 on-chain contracts, categorizing 49 role-permission pairs from the top 1,000 pairs mined. Second, during the online phase, ACFIX tracks AC-related elements across the contract and uses this context information along with a Chain-of-Thought pipeline to guide LLMs in identifying the most appropriate role-permission pair for the subject contract and subsequently generating a suitable patch. This patch will then undergo a validity and effectiveness check. To evaluate ACFIX, we built the first benchmark dataset of 118 real-world AC vulnerabilities, and our evaluation revealed that ACFIX successfully repaired 94.92% of them. This represents a significant improvement compared to the baseline GPT-4, which achieved only 52.54%.

相關內容

Community detection is the problem of recognizing natural divisions in networks. A relevant challenge in this problem is to find communities on rapidly evolving graphs. In this report we present our Parallel Dynamic Frontier (DF) Louvain algorithm, which given a batch update of edge deletions and insertions, incrementally identifies and processes an approximate set of affected vertices in the graph with minimal overhead, while using a novel approach of incrementally updating weighted-degrees of vertices and total edge weights of communities. We also present our parallel implementations of Naive-dynamic (ND) and Delta-screening (DS) Louvain. On a server with a 64-core AMD EPYC-7742 processor, our experiments show that DF Louvain obtains speedups of 179x, 7.2x, and 5.3x on real-world dynamic graphs, compared to Static, ND, and DS Louvain, respectively, and is 183x, 13.8x, and 8.7x faster, respectively, on large graphs with random batch updates. Moreover, DF Louvain improves its performance by 1.6x for every doubling of threads.

Despite the success of diffusion-based customization methods on visual content creation, increasing concerns have been raised about such techniques from both privacy and political perspectives. To tackle this issue, several anti-customization methods have been proposed in very recent months, predominantly grounded in adversarial attacks. Unfortunately, most of these methods adopt straightforward designs, such as end-to-end optimization with a focus on adversarially maximizing the original training loss, thereby neglecting nuanced internal properties intrinsic to the diffusion model, and even leading to ineffective optimization in some diffusion time steps.In this paper, we strive to bridge this gap by undertaking a comprehensive exploration of these inherent properties, to boost the performance of current anti-customization approaches. Two aspects of properties are investigated: 1) We examine the relationship between time step selection and the model's perception in the frequency domain of images and find that lower time steps can give much more contributions to adversarial noises. This inspires us to propose an adaptive greedy search for optimal time steps that seamlessly integrates with existing anti-customization methods. 2) We scrutinize the roles of features at different layers during denoising and devise a sophisticated feature-based optimization framework for anti-customization.Experiments on facial benchmarks demonstrate that our approach significantly increases identity disruption, thereby protecting user privacy and copyright. Our code is available at: //github.com/somuchtome/SimAC.

The implications of backdoor attacks on English-centric large language models (LLMs) have been widely examined - such attacks can be achieved by embedding malicious behaviors during training and activated under specific conditions that trigger malicious outputs. However, the impact of backdoor attacks on multilingual models remains under-explored. Our research focuses on cross-lingual backdoor attacks against multilingual LLMs, particularly investigating how poisoning the instruction-tuning data in one or two languages can affect the outputs in languages whose instruction-tuning data was not poisoned. Despite its simplicity, our empirical analysis reveals that our method exhibits remarkable efficacy in models like mT5, BLOOM, and GPT-3.5-turbo, with high attack success rates, surpassing 95% in several languages across various scenarios. Alarmingly, our findings also indicate that larger models show increased susceptibility to transferable cross-lingual backdoor attacks, which also applies to LLMs predominantly pre-trained on English data, such as Llama2, Llama3, and Gemma. Moreover, our experiments show that triggers can still work even after paraphrasing, and the backdoor mechanism proves highly effective in cross-lingual response settings across 25 languages, achieving an average attack success rate of 50%. Our study aims to highlight the vulnerabilities and significant security risks present in current multilingual LLMs, underscoring the emergent need for targeted security measures.

Current recommendation systems are significantly affected by a serious issue of temporal data shift, which is the inconsistency between the distribution of historical data and that of online data. Most existing models focus on utilizing updated data, overlooking the transferable, temporal data shift-free information that can be learned from shifting data. We propose the Temporal Invariance of Association theorem, which suggests that given a fixed search space, the relationship between the data and the data in the search space keeps invariant over time. Leveraging this principle, we designed a retrieval-based recommendation system framework that can train a data shift-free relevance network using shifting data, significantly enhancing the predictive performance of the original model in the recommendation system. However, retrieval-based recommendation models face substantial inference time costs when deployed online. To address this, we further designed a distill framework that can distill information from the relevance network into a parameterized module using shifting data. The distilled model can be deployed online alongside the original model, with only a minimal increase in inference time. Extensive experiments on multiple real datasets demonstrate that our framework significantly improves the performance of the original model by utilizing shifting data.

Community detection is the problem of identifying natural divisions in networks. Efficient parallel algorithms for identifying such divisions is critical in a number of applications, where the size of datasets have reached significant scales. This technical report presents one of the most efficient parallel implementation of the Leiden algorithm, a high quality community detection method. On a server equipped with dual 16-core Intel Xeon Gold 6226R processors, our Leiden implementation, which we term as GVE-Leiden, outperforms the original Leiden, igraph Leiden, and NetworKit Leiden by 436x, 104x, and 8.2x respectively - achieving a processing rate of 403M edges/s on a 3.8B edge graph. Compared to GVE-Louvain, our parallel Louvain implementation, GVE-Leiden achieves a total elimination of disconnected communities, with only a 13% increase in runtime. In addition, GVE-Leiden improves performance at an average rate of 1.6x for every doubling of threads.

Community detection is the problem of identifying natural divisions in networks. Efficient parallel algorithms for identifying such divisions is critical in a number of applications, where the size of datasets have reached significant scales. This technical report presents one of the most efficient multicore implementations of the Louvain algorithm, a high quality community detection method. On a server equipped with dual 16-core Intel Xeon Gold 6226R processors, our Louvain, which we term as GVE-Louvain, outperforms Vite, Grappolo, and NetworKit Louvain by 50x, 22x, and 20x respectively - achieving a processing rate of 560M edges/s on a 3.8B edge graph. In addition, GVE-Louvain improves performance at an average rate of 1.6x for every doubling of threads.

Background: Software Vulnerability (SV) prediction in emerging languages is increasingly important to ensure software security in modern systems. However, these languages usually have limited SV data for developing high-performing prediction models. Aims: We conduct an empirical study to evaluate the impact of SV data scarcity in emerging languages on the state-of-the-art SV prediction model and investigate potential solutions to enhance the performance. Method: We train and test the state-of-the-art model based on CodeBERT with and without data sampling techniques for function-level and line-level SV prediction in three low-resource languages - Kotlin, Swift, and Rust. We also assess the effectiveness of ChatGPT for low-resource SV prediction given its recent success in other domains. Results: Compared to the original work in C/C++ with large data, CodeBERT's performance of function-level and line-level SV prediction significantly declines in low-resource languages, signifying the negative impact of data scarcity. Regarding remediation, data sampling techniques fail to improve CodeBERT; whereas, ChatGPT showcases promising results, substantially enhancing predictive performance by up to 34.4% for the function level and up to 53.5% for the line level. Conclusion: We have highlighted the challenge and made the first promising step for low-resource SV prediction, paving the way for future research in this direction.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司