Deep generative networks in recent years have reinforced the need for caution while consuming various modalities of digital information. One avenue of deepfake creation is aligned with injection and removal of tumors from medical scans. Failure to detect medical deepfakes can lead to large setbacks on hospital resources or even loss of life. This paper attempts to address the detection of such attacks with a structured case study. We evaluate different machine learning algorithms and pretrained convolutional neural networks on distinguishing between tampered and untampered data. The findings of this work show near perfect accuracy in detecting instances of tumor injections and removals.
This work investigates the possibilities enabled by federated learning concerning IoT malware detection and studies security issues inherent to this new learning paradigm. In this context, a framework that uses federated learning to detect malware affecting IoT devices is presented. N-BaIoT, a dataset modeling network traffic of several real IoT devices while affected by malware, has been used to evaluate the proposed framework. Both supervised and unsupervised federated models (multi-layer perceptron and autoencoder) able to detect malware affecting seen and unseen IoT devices of N-BaIoT have been trained and evaluated. Furthermore, their performance has been compared to two traditional approaches. The first one lets each participant locally train a model using only its own data, while the second consists of making the participants share their data with a central entity in charge of training a global model. This comparison has shown that the use of more diverse and large data, as done in the federated and centralized methods, has a considerable positive impact on the model performance. Besides, the federated models, while preserving the participant's privacy, show similar results as the centralized ones. As an additional contribution and to measure the robustness of the federated approach, an adversarial setup with several malicious participants poisoning the federated model has been considered. The baseline model aggregation averaging step used in most federated learning algorithms appears highly vulnerable to different attacks, even with a single adversary. The performance of other model aggregation functions acting as countermeasures is thus evaluated under the same attack scenarios. These functions provide a significant improvement against malicious participants, but more efforts are still needed to make federated approaches robust.
Cherenkov gamma telescope observes high energy gamma rays, taking advantage of the radiation emitted by charged particles produced inside the electromagnetic showers initiated by the gammas, and developing in the atmosphere. The detector records and allows for the reconstruction of the shower parameters. The reconstruction of the parameter values was achieved using a Monte Carlo simulation algorithm called CORSIKA. The present study developed multiple machine-learning-based classification models and evaluated their performance. Different data transformation and feature extraction techniques were applied to the dataset to assess the impact on two separate performance metrics. The results of the proposed application reveal that the different data transformations did not significantly impact (p = 0.3165) the performance of the models. A pairwise comparison indicates that the performance from each transformed data was not significantly different from the performance of the raw data. Additionally, the SVM algorithm produced the highest performance score on the standardized dataset. In conclusion, this study suggests that high-energy gamma particles can be predicted with sufficient accuracy using SVM on a standardized dataset than the other algorithms with the various data transformations.
Machine learning is penetrating various domains virtually, thereby proliferating excellent results. It has also found an outlet in digital forensics, wherein it is becoming the prime driver of computational efficiency. A prominent feature that exhibits the effectiveness of ML algorithms is feature extraction that can be instrumental in the applications for digital forensics. Convolutional Neural Networks are further used to identify parts of the file. To this end, we observed that the literature does not include sufficient information about the identification of the algorithms used to compress file fragments. With this research, we attempt to address this gap as compression algorithms are beneficial in generating higher entropy comparatively as they make the data more compact. We used a base dataset, compressed every file with various algorithms, and designed a model based on that. The used model was accurately able to identify files compressed using compress, lzip and bzip2.
We propose a new method to detect deepfake images using the cue of the source feature inconsistency within the forged images. It is based on the hypothesis that images' distinct source features can be preserved and extracted after going through state-of-the-art deepfake generation processes. We introduce a novel representation learning approach, called pair-wise self-consistency learning (PCL), for training ConvNets to extract these source features and detect deepfake images. It is accompanied by a new image synthesis approach, called inconsistency image generator (I2G), to provide richly annotated training data for PCL. Experimental results on seven popular datasets show that our models improve averaged AUC over the state of the art from 96.45% to 98.05% in the in-dataset evaluation and from 86.03% to 92.18% in the cross-dataset evaluation.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.
Text to Image Synthesis refers to the process of automatic generation of a photo-realistic image starting from a given text and is revolutionizing many real-world applications. In order to perform such process it is necessary to exploit datasets containing captioned images, meaning that each image is associated with one (or more) captions describing it. Despite the abundance of uncaptioned images datasets, the number of captioned datasets is limited. To address this issue, in this paper we propose an approach capable of generating images starting from a given text using conditional GANs trained on uncaptioned images dataset. In particular, uncaptioned images are fed to an Image Captioning Module to generate the descriptions. Then, the GAN Module is trained on both the input image and the machine-generated caption. To evaluate the results, the performance of our solution is compared with the results obtained by the unconditional GAN. For the experiments, we chose to use the uncaptioned dataset LSUN bedroom. The results obtained in our study are preliminary but still promising.
Deep learning has been successfully applied to solve various complex problems ranging from big data analytics to computer vision and human-level control. Deep learning advances however have also been employed to create software that can cause threats to privacy, democracy and national security. One of those deep learning-powered applications recently emerged is "deepfake". Deepfake algorithms can create fake images and videos that humans cannot distinguish them from authentic ones. The proposal of technologies that can automatically detect and assess the integrity of digital visual media is therefore indispensable. This paper presents a survey of algorithms used to create deepfakes and, more importantly, methods proposed to detect deepfakes in the literature to date. We present extensive discussions on challenges, research trends and directions related to deepfake technologies. By reviewing the background of deepfakes and state-of-the-art deepfake detection methods, this study provides a comprehensive overview of deepfake techniques and facilitates the development of new and more robust methods to deal with the increasingly challenging deepfakes.
It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found that audio-visual approach based on lip-sync inconsistency detection was not able to distinguish Deepfake videos. The best performing method, which is based on visual quality metrics and is often used in presentation attack detection domain, resulted in 8.97% equal error rate on high quality Deepfakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.
Deep learning has shown promising results in medical image analysis, however, the lack of very large annotated datasets confines its full potential. Although transfer learning with ImageNet pre-trained classification models can alleviate the problem, constrained image sizes and model complexities can lead to unnecessary increase in computational cost and decrease in performance. As many common morphological features are usually shared by different classification tasks of an organ, it is greatly beneficial if we can extract such features to improve classification with limited samples. Therefore, inspired by the idea of curriculum learning, we propose a strategy for building medical image classifiers using features from segmentation networks. By using a segmentation network pre-trained on similar data as the classification task, the machine can first learn the simpler shape and structural concepts before tackling the actual classification problem which usually involves more complicated concepts. Using our proposed framework on a 3D three-class brain tumor type classification problem, we achieved 82% accuracy on 191 testing samples with 91 training samples. When applying to a 2D nine-class cardiac semantic level classification problem, we achieved 86% accuracy on 263 testing samples with 108 training samples. Comparisons with ImageNet pre-trained classifiers and classifiers trained from scratch are presented.
One of the most common tasks in medical imaging is semantic segmentation. Achieving this segmentation automatically has been an active area of research, but the task has been proven very challenging due to the large variation of anatomy across different patients. However, recent advances in deep learning have made it possible to significantly improve the performance of image recognition and semantic segmentation methods in the field of computer vision. Due to the data driven approaches of hierarchical feature learning in deep learning frameworks, these advances can be translated to medical images without much difficulty. Several variations of deep convolutional neural networks have been successfully applied to medical images. Especially fully convolutional architectures have been proven efficient for segmentation of 3D medical images. In this article, we describe how to build a 3D fully convolutional network (FCN) that can process 3D images in order to produce automatic semantic segmentations. The model is trained and evaluated on a clinical computed tomography (CT) dataset and shows state-of-the-art performance in multi-organ segmentation.