State Machine Replication (SMR) protocols form the backbone of many distributed systems. Enterprises and startups increasingly build their distributed systems on the cloud due to its many advantages, such as scalability and cost-effectiveness. One of the first technical questions companies face when building a system on the cloud is which programming language to use. Among many factors that go into this decision is whether to use a language with garbage collection (GC), such as Java or Go, or a language with manual memory management, such as C++ or Rust. Today, companies predominantly prefer languages with GC, like Go, Kotlin, or even Python, due to ease of development; however, there is no free lunch: GC costs resources (memory and CPU) and performance (long tail latencies due to GC pauses). While there have been anecdotal reports of reduced cloud cost and improved tail latencies when switching from a language with GC to a language with manual memory management, so far, there has not been a systematic study of the GC overhead of running an SMR-based cloud system. This paper studies the overhead of running an SMR-based cloud system written in a language with GC. To this end, we design from scratch a canonical SMR system -- a MultiPaxos-based replicated in-memory key-value store -- and we implement it in C++, Java, Rust, and Go. We compare the performance and resource usage of these implementations when running on the cloud under different workloads and resource constraints and report our results. Our findings have implications for the design of cloud systems.
Biomanufacturing innovation relies on an efficient Design of Experiments (DoEs) to optimize processes and product quality. Traditional DoE methods, ignoring the underlying bioprocessing mechanisms, often suffer from a lack of interpretability and sample efficiency. This limitation motivates us to create a new optimal learning approach for digital twin model calibration. In this study, we consider the cell culture process multi-scale mechanistic model, also known as Biological System-of-Systems (Bio-SoS). This model with a modular design, composed of sub-models, allows us to integrate data across various production processes. To calibrate the Bio-SoS digital twin, we evaluate the mean squared error of model prediction and develop a computational approach to quantify the impact of parameter estimation error of individual sub-models on the prediction accuracy of digital twin, which can guide sample-efficient and interpretable DoEs.
Collaborative Edge Computing (CEC) is an emerging paradigm that collaborates heterogeneous edge devices as a resource pool to compute DNN inference tasks in proximity such as edge video analytics. Nevertheless, as the key knob to improve network utility in CEC, existing works mainly focus on the workload routing strategies among edge devices with the aim of minimizing the routing cost, remaining an open question for joint workload allocation and routing optimization problem from a system perspective. To this end, this paper presents a holistic, learned optimization for CEC towards maximizing the total network utility in an online manner, even though the utility functions of task input rates are unknown a priori. In particular, we characterize the CEC system in a flow model and formulate an online learning problem in a form of cross-layer optimization. We propose a nested-loop algorithm to solve workload allocation and distributed routing iteratively, using the tools of gradient sampling and online mirror descent. To improve the convergence rate over the nested-loop version, we further devise a single-loop algorithm. Rigorous analysis is provided to show its inherent convexity, efficient convergence, as well as algorithmic optimality. Finally, extensive numerical simulations demonstrate the superior performance of our solutions.
Large Language Models (LLMs) have shown significant promise as copilots in various tasks. Local deployment of LLMs on edge devices is necessary when handling privacy-sensitive data or latency-sensitive tasks. The computational constraints of such devices make direct deployment of powerful large-scale LLMs impractical, necessitating the Knowledge Distillation from large-scale models to lightweight models. Lots of work has been done to elicit diversity and quality training examples from LLMs, but little attention has been paid to aligning teacher instructional content based on student preferences, akin to "responsive teaching" in pedagogy. Thus, we propose ARTE, dubbed Aligning TeacheR with StudenT PreferencEs, a framework that aligns the teacher model with student preferences to generate tailored training examples for Knowledge Distillation. Specifically, we elicit draft questions and rationales from the teacher model, then collect student preferences on these questions and rationales using students' performance with in-context learning as a proxy, and finally align the teacher model with student preferences. In the end, we repeat the first step with the aligned teacher model to elicit tailored training examples for the student model on the target task. Extensive experiments on academic benchmarks demonstrate the superiority of ARTE over existing instruction-tuning datasets distilled from powerful LLMs. Moreover, we thoroughly investigate the generalization of ARTE, including the generalization of fine-tuned student models in reasoning ability and the generalization of aligned teacher models to generate tailored training data across tasks and students. In summary, our contributions lie in proposing a novel framework for tailored training example generation, demonstrating its efficacy in experiments, and investigating the generalization of both student & aligned teacher models in ARTE.
Normalizing Flows explicitly maximize a full-dimensional likelihood on the training data. However, real data is typically only supported on a lower-dimensional manifold leading the model to expend significant compute on modeling noise. Injective Flows fix this by jointly learning a manifold and the distribution on it. So far, they have been limited by restrictive architectures and/or high computational cost. We lift both constraints by a new efficient estimator for the maximum likelihood loss, compatible with free-form bottleneck architectures. We further show that naively learning both the data manifold and the distribution on it can lead to divergent solutions, and use this insight to motivate a stable maximum likelihood training objective. We perform extensive experiments on toy, tabular and image data, demonstrating the competitive performance of the resulting model.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
There are now over 20 commercial vector database management systems (VDBMSs), all produced within the past five years. But embedding-based retrieval has been studied for over ten years, and similarity search a staggering half century and more. Driving this shift from algorithms to systems are new data intensive applications, notably large language models, that demand vast stores of unstructured data coupled with reliable, secure, fast, and scalable query processing capability. A variety of new data management techniques now exist for addressing these needs, however there is no comprehensive survey to thoroughly review these techniques and systems. We start by identifying five main obstacles to vector data management, namely vagueness of semantic similarity, large size of vectors, high cost of similarity comparison, lack of natural partitioning that can be used for indexing, and difficulty of efficiently answering hybrid queries that require both attributes and vectors. Overcoming these obstacles has led to new approaches to query processing, storage and indexing, and query optimization and execution. For query processing, a variety of similarity scores and query types are now well understood; for storage and indexing, techniques include vector compression, namely quantization, and partitioning based on randomization, learning partitioning, and navigable partitioning; for query optimization and execution, we describe new operators for hybrid queries, as well as techniques for plan enumeration, plan selection, and hardware accelerated execution. These techniques lead to a variety of VDBMSs across a spectrum of design and runtime characteristics, including native systems specialized for vectors and extended systems that incorporate vector capabilities into existing systems. We then discuss benchmarks, and finally we outline research challenges and point the direction for future work.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP) and have recently gained significant attention in the domain of Recommendation Systems (RS). These models, trained on massive amounts of data using self-supervised learning, have demonstrated remarkable success in learning universal representations and have the potential to enhance various aspects of recommendation systems by some effective transfer techniques such as fine-tuning and prompt tuning, and so on. The crucial aspect of harnessing the power of language models in enhancing recommendation quality is the utilization of their high-quality representations of textual features and their extensive coverage of external knowledge to establish correlations between items and users. To provide a comprehensive understanding of the existing LLM-based recommendation systems, this survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec), with the latter being systematically sorted out for the first time. Furthermore, we systematically review and analyze existing LLM-based recommendation systems within each paradigm, providing insights into their methodologies, techniques, and performance. Additionally, we identify key challenges and several valuable findings to provide researchers and practitioners with inspiration.
Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.