Capturing data from dynamic processes through cross-sectional measurements is seen in many fields such as computational biology. Trajectory inference deals with the challenge of reconstructing continuous processes from such observations. In this work, we propose methods for B-spline approximation and interpolation of point clouds through consecutive averaging that is instrinsic to the Wasserstein space. Combining subdivision schemes with optimal transport-based geodesic, our methods carry out trajectory inference at a chosen level of precision and smoothness, and can automatically handle scenarios where particles undergo division over time. We rigorously evaluate our method by providing convergence guarantees and testing it on simulated cell data characterized by bifurcations and merges, comparing its performance against state-of-the-art trajectory inference and interpolation methods. The results not only underscore the effectiveness of our method in inferring trajectories, but also highlight the benefit of performing interpolation and approximation that respect the inherent geometric properties of the data.
Recently, decentralized learning has emerged as a popular peer-to-peer signal and information processing paradigm that enables model training across geographically distributed agents in a scalable manner, without the presence of any central server. When some of the agents are malicious (also termed as Byzantine), resilient decentralized learning algorithms are able to limit the impact of these Byzantine agents without knowing their number and identities, and have guaranteed optimization errors. However, analysis of the generalization errors, which are critical to implementations of the trained models, is still lacking. In this paper, we provide the first analysis of the generalization errors for a class of popular Byzantine-resilient decentralized stochastic gradient descent (DSGD) algorithms. Our theoretical results reveal that the generalization errors cannot be entirely eliminated because of the presence of the Byzantine agents, even if the number of training samples are infinitely large. Numerical experiments are conducted to confirm our theoretical results.
Recent advances in the field of deep learning and impressive performance of deep neural networks (DNNs) for perception have resulted in an increased demand for their use in automated driving (AD) systems. The safety of such systems is of utmost importance and thus requires to consider the unique properties of DNNs. In order to achieve safety of AD systems with DNN-based perception components in a systematic and comprehensive approach, so-called safety concerns have been introduced as a suitable structuring element. On the one hand, the concept of safety concerns is -- by design -- well aligned to existing standards relevant for safety of AD systems such as ISO 21448 (SOTIF). On the other hand, it has already inspired several academic publications and upcoming standards on AI safety such as ISO PAS 8800. While the concept of safety concerns has been previously introduced, this paper extends and refines it, leveraging feedback from various domain and safety experts in the field. In particular, this paper introduces an additional categorization for a better understanding as well as enabling cross-functional teams to jointly address the concerns.
Transfer optimization enables data-efficient optimization of a target task by leveraging experiential priors from related source tasks. This is especially useful in multiobjective optimization settings where a set of trade-off solutions is sought under tight evaluation budgets. In this paper, we introduce a novel concept of \textit{inverse transfer} in multiobjective optimization. Inverse transfer stands out by employing Bayesian inverse Gaussian process models to map performance vectors in the objective space to population search distributions in task-specific decision space, facilitating knowledge transfer through objective space unification. Building upon this idea, we introduce the first Inverse Transfer Evolutionary Multiobjective Optimizer (invTrEMO). A key highlight of invTrEMO is its ability to harness the common objective functions prevalent in many application areas, even when decision spaces do not precisely align between tasks. This allows invTrEMO to uniquely and effectively utilize information from heterogeneous source tasks as well. Furthermore, invTrEMO yields high-precision inverse models as a significant byproduct, enabling the generation of tailored solutions on-demand based on user preferences. Empirical studies on multi- and many-objective benchmark problems, as well as a practical case study, showcase the faster convergence rate and modelling accuracy of the invTrEMO relative to state-of-the-art evolutionary and Bayesian optimization algorithms. The source code of the invTrEMO is made available at //github.com/LiuJ-2023/invTrEMO.
This research explores neural network-based numerical approximation of two-dimensional convection- dominated singularly perturbed problems on square, circular, and elliptic domains. Singularly perturbed boundary value problems pose significant challenges due to sharp boundary layers in their solutions. Additionally, the characteristic points of these domains give rise to degenerate boundary layer problems. The stiffness of these problems, caused by sharp singular layers, can lead to substantial computational errors if not properly addressed. Conventional neural network-based approaches often fail to capture these sharp transitions accurately, highlighting a critical flaw in machine learning methods. To address these issues, we conduct a thorough boundary layer analysis to enhance our understanding of sharp transitions within the boundary layers, guiding the application of numerical methods. Specifically, we employ physics-informed neural networks (PINNs) to better handle these boundary layer problems. However, PINNs may struggle with rapidly varying singularly perturbed solutions in small domain regions, leading to inaccurate or unstable results. To overcome this limitation, we introduce a semi-analytic method that augments PINNs with singular layers or corrector functions. Our numerical experiments demonstrate significant improvements in both accuracy and stability, showcasing the effectiveness of our proposed approach.
Deep learning algorithms have been shown to be powerful in many communication network design problems, including that in automatic modulation classification. However, they are vulnerable to carefully crafted attacks called adversarial examples. Hence, the reliance of wireless networks on deep learning algorithms poses a serious threat to the security and operation of wireless networks. In this letter, we propose for the first time a countermeasure against adversarial examples in modulation classification. Our countermeasure is based on a neural rejection technique, augmented by label smoothing and Gaussian noise injection, that allows to detect and reject adversarial examples with high accuracy. Our results demonstrate that the proposed countermeasure can protect deep-learning based modulation classification systems against adversarial examples.
We propose a regularization scheme for image reconstruction that leverages the power of deep learning while hinging on classic sparsity-promoting models. Many deep-learning-based models are hard to interpret and cumbersome to analyze theoretically. In contrast, our scheme is interpretable because it corresponds to the minimization of a series of convex problems. For each problem in the series, a mask is generated based on the previous solution to refine the regularization strength spatially. In this way, the model becomes progressively attentive to the image structure. For the underlying update operator, we prove the existence of a fixed point. As a special case, we investigate a mask generator for which the fixed-point iterations converge to a critical point of an explicit energy functional. In our experiments, we match the performance of state-of-the-art learned variational models for the solution of inverse problems. Additionally, we offer a promising balance between interpretability, theoretical guarantees, reliability, and performance.
Linear arrangements of graphs are a well-known type of graph labeling and are found in many important computational problems, such as the Minimum Linear Arrangement Problem ($\texttt{minLA}$). A linear arrangement is usually defined as a permutation of the $n$ vertices of a graph. An intuitive geometric setting is that of vertices lying on consecutive integer positions in the real line, starting at 1; edges are often drawn as semicircles above the real line. In this paper we study the Maximum Linear Arrangement problem ($\texttt{MaxLA}$), the maximization variant of $\texttt{minLA}$. We devise a new characterization of maximum arrangements of general graphs, and prove that $\texttt{MaxLA}$ can be solved for cycle graphs in constant time, and for $k$-linear trees ($k\le2$) in time $O(n)$. We present two constrained variants of $\texttt{MaxLA}$ we call $\texttt{bipartite MaxLA}$ and $\texttt{1-thistle MaxLA}$. We prove that the former can be solved in time $O(n)$ for any bipartite graph; the latter, by an algorithm that typically runs in time $O(n^4)$ on unlabelled trees. The combination of the two variants has two promising characteristics. First, it solves $\texttt{MaxLA}$ for almost all trees consisting of a few tenths of nodes. Second, we prove that it constitutes a $3/2$-approximation algorithm for $\texttt{MaxLA}$ for trees. Furthermore, we conjecture that $\texttt{bipartite MaxLA}$ solves $\texttt{MaxLA}$ for at least $50\%$ of all free trees.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.
The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.