Autonomous vehicle navigation and healthcare diagnostics are among the many fields where the reliability and security of machine learning models for image data are critical. We conduct a comprehensive investigation into the susceptibility of Convolutional Neural Networks (CNNs), which are widely used for image data, to white-box adversarial attacks. We investigate the effects of various sophisticated attacks -- Fast Gradient Sign Method, Basic Iterative Method, Jacobian-based Saliency Map Attack, Carlini & Wagner, Projected Gradient Descent, and DeepFool -- on CNN performance metrics, (e.g., loss, accuracy), the differential efficacy of adversarial techniques in increasing error rates, the relationship between perceived image quality metrics (e.g., ERGAS, PSNR, SSIM, and SAM) and classification performance, and the comparative effectiveness of iterative versus single-step attacks. Using the MNIST, CIFAR-10, CIFAR-100, and Fashio_MNIST datasets, we explore the effect of different attacks on the CNNs performance metrics by varying the hyperparameters of CNNs. Our study provides insights into the robustness of CNNs against adversarial threats, pinpoints vulnerabilities, and underscores the urgent need for developing robust defense mechanisms to protect CNNs and ensuring their trustworthy deployment in real-world scenarios.
Accurate nutrition estimation helps people make informed dietary choices and is essential in the prevention of serious health complications. We present NutriBench, the first publicly available natural language meal description nutrition benchmark. NutriBench consists of 11,857 meal descriptions generated from real-world global dietary intake data. The data is human-verified and annotated with macro-nutrient labels, including carbohydrates, proteins, fats, and calories. We conduct an extensive evaluation of NutriBench on the task of carbohydrate estimation, testing twelve leading Large Language Models (LLMs), including GPT-4o, Llama3.1, Qwen2, Gemma2, and OpenBioLLM models, using standard, Chain-of-Thought and Retrieval-Augmented Generation strategies. Additionally, we present a study involving professional nutritionists, finding that LLMs can provide more accurate and faster estimates. Finally, we perform a real-world risk assessment by simulating the effect of carbohydrate predictions on the blood glucose levels of individuals with diabetes. Our work highlights the opportunities and challenges of using LLMs for nutrition estimation, demonstrating their potential to aid professionals and laypersons and improve health outcomes. Our benchmark is publicly available at: //mehak126.github.io/nutribench.html
This study focuses on Intelligent Fault Diagnosis (IFD) in rotating machinery utilizing a single microphone and a data-driven methodology, effectively diagnosing 42 classes of fault types and severities. The research leverages sound data from the imbalanced MaFaulDa dataset, aiming to strike a balance between high performance and low resource consumption. The testing phase encompassed a variety of configurations, including sampling, quantization, signal normalization, silence removal, Wiener filtering, data scaling, windowing, augmentation, and classifier tuning using XGBoost. Through the analysis of time, frequency, mel-frequency, and statistical features, we achieved an impressive accuracy of 99.54% and an F-Beta score of 99.52% with just 6 boosting trees at an 8 kHz, 8-bit configuration. Moreover, when utilizing only MFCCs along with their first- and second-order deltas, we recorded an accuracy of 97.83% and an F-Beta score of 97.67%. Lastly, by implementing a greedy wrapper approach, we obtained a remarkable accuracy of 96.82% and an F-Beta score of 98.86% using 50 selected features, nearly all of which were first- and second-order deltas of the MFCCs.
By leveraging the representation power of deep neural networks, neural upper confidence bound (UCB) algorithms have shown success in contextual bandits. To further balance the exploration and exploitation, we propose Neural-$\sigma^2$-LinearUCB, a variance-aware algorithm that utilizes $\sigma^2_t$, i.e., an upper bound of the reward noise variance at round $t$, to enhance the uncertainty quantification quality of the UCB, resulting in a regret performance improvement. We provide an oracle version for our algorithm characterized by an oracle variance upper bound $\sigma^2_t$ and a practical version with a novel estimation for this variance bound. Theoretically, we provide rigorous regret analysis for both versions and prove that our oracle algorithm achieves a better regret guarantee than other neural-UCB algorithms in the neural contextual bandits setting. Empirically, our practical method enjoys a similar computational efficiency, while outperforming state-of-the-art techniques by having a better calibration and lower regret across multiple standard settings, including on the synthetic, UCI, MNIST, and CIFAR-10 datasets.
Although large language models (LLMs) have been assessed for general medical knowledge using medical licensing exams, their ability to effectively support clinical decision-making tasks, such as selecting and using medical calculators, remains uncertain. Here, we evaluate the capability of both medical trainees and LLMs to recommend medical calculators in response to various multiple-choice clinical scenarios such as risk stratification, prognosis, and disease diagnosis. We assessed eight LLMs, including open-source, proprietary, and domain-specific models, with 1,009 question-answer pairs across 35 clinical calculators and measured human performance on a subset of 100 questions. While the highest-performing LLM, GPT-4o, provided an answer accuracy of 74.3% (CI: 71.5-76.9%), human annotators, on average, outperformed LLMs with an accuracy of 79.5% (CI: 73.5-85.0%). With error analysis showing that the highest-performing LLMs continue to make mistakes in comprehension (56.6%) and calculator knowledge (8.1%), our findings emphasize that humans continue to surpass LLMs on complex clinical tasks such as calculator recommendation.
Logs are crucial for analyzing large-scale software systems, offering insights into system health, performance, security threats, potential bugs, etc. However, their chaotic nature$\unicode{x2013}$characterized by sheer volume, lack of standards, and variability$\unicode{x2013}$makes manual analysis complex. The use of clustering algorithms can assist by grouping logs into a smaller set of templates, but lose the temporal and relational context in doing so. On the contrary, Large Language Models (LLMs) can provide meaningful explanations but struggle with processing large collections efficiently. Moreover, representation techniques for both approaches are typically limited to either plain text or traditional charting, especially when dealing with large-scale systems. In this paper, we combine clustering and LLM summarization with event detection and Multidimensional Scaling through the use of Time Curves to produce a holistic pipeline that enables efficient and automatic summarization of vast collections of software system logs. The core of our approach is the proposal of a semimetric distance that effectively measures similarity between events, thus enabling a meaningful representation. We show that our method can explain the main events of logs collected from different applications without prior knowledge. We also show how the approach can be used to detect general trends as well as outliers in parallel and distributed systems by overlapping multiple projections. As a result, we expect a significant reduction of the time required to analyze and resolve system-wide issues, identify performance bottlenecks and security risks, debug applications, etc.
Over several decades, electromechanical impedance (EMI) measurements have been employed as a basis for structural health monitoring and damage detection. Traditionally, Root-mean-squared-deviation (RMSD) and Cross-correlation (XCORR) based metrics have been used to interpret EMI measurements for damage assessment. These tools, although helpful and widely used, were not designed with the idea to assess changes in EMI to underlying physical changes incurred by damage. The authors propose leveraging vector fitting (VF), a rational function approximation technique, to estimate the poles of the underlying system, and consequently, the modal parameters which have a physical connection to the underlying model of a system. Shifts in natural frequencies, as an effect of changes in the pole location, can be attributed to changes in a structure undergoing damage. With VF, tracking changes between measurements of damaged and pristine structures is physically more intuitive unlike when using traditional metrics, making it ideal for informed post-processing. Alternative methods to VF exist in the literature (e.g., Least Square Complex Frequency-domain (LSCF) estimation, adaptive Antoulas--Anderson (AAA), Rational Krylov Fitting (RKFIT)). The authors demonstrate that VF is better suited for EMI-based structural health monitoring for the following reasons: 1. VF is more accurate at high frequency, 2. VF estimates complex conjugate stable pole pairs, close to the actual poles of the system, and 3. VF can capture critical information missed by other approaches and present it in a condensed form. Thus, using the selected technique for interpreting high-frequency EMI measurements for structural health monitoring is proposed. A set of representative case studies is presented to show the benefits of VF for damage detection and diagnosis.
With the growing interest in using AI and machine learning (ML) in medicine, there is an increasing number of literature covering the application and ethics of using AI and ML in areas of medicine such as clinical psychiatry. The problem is that there is little literature covering the economic aspects associated with using ML in clinical psychiatry. This study addresses this gap by specifically studying the economic implications of using ML in clinical psychiatry. In this paper, we evaluate the economic implications of using ML in clinical psychiatry through using three problem-oriented case studies, literature on economics, socioeconomic and medical AI, and two types of health economic evaluations. In addition, we provide details on fairness, legal, ethics and other considerations for ML in clinical psychiatry.
Autonomous systems are soon to be ubiquitous, from manufacturing autonomy to agricultural field robots, and from health care assistants to the entertainment industry. The majority of these systems are developed with modular sub-components for decision-making, planning, and control that may be hand-engineered or learning-based. While these existing approaches have been shown to perform well under the situations they were specifically designed for, they can perform especially poorly in rare, out-of-distribution scenarios that will undoubtedly arise at test-time. The rise of foundation models trained on multiple tasks with impressively large datasets from a variety of fields has led researchers to believe that these models may provide common sense reasoning that existing planners are missing. Researchers posit that this common sense reasoning will bridge the gap between algorithm development and deployment to out-of-distribution tasks, like how humans adapt to unexpected scenarios. Large language models have already penetrated the robotics and autonomous systems domains as researchers are scrambling to showcase their potential use cases in deployment. While this application direction is very promising empirically, foundation models are known to hallucinate and generate decisions that may sound reasonable, but are in fact poor. We argue there is a need to step back and simultaneously design systems that can quantify the certainty of a model's decision, and detect when it may be hallucinating. In this work, we discuss the current use cases of foundation models for decision-making tasks, provide a general definition for hallucinations with examples, discuss existing approaches to hallucination detection and mitigation with a focus on decision problems, and explore areas for further research in this exciting field.
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.