Throughout the life sciences we routinely seek to interpret measurements and observations using parameterised mechanistic mathematical models. A fundamental and often overlooked choice in this approach involves relating the solution of a mathematical model with noisy and incomplete measurement data. This is often achieved by assuming that the data are noisy measurements of the solution of a deterministic mathematical model, and that measurement errors are additive and normally distributed. While this assumption of additive Gaussian noise is extremely common and simple to implement and interpret, it is often unjustified and can lead to poor parameter estimates and non-physical predictions. One way to overcome this challenge is to implement a different measurement error model. In this review, we demonstrate how to implement a range of measurement error models in a likelihood-based framework for estimation, identifiability analysis, and prediction. We focus our implementation within a frequentist profile likelihood-based framework, but our approach is directly relevant to other approaches including sampling-based Bayesian methods. Case studies, motivated by simple caricature models routinely used in the systems biology and mathematical biology literature, illustrate how the same ideas apply to different types of mathematical models. Open-source Julia code to reproduce results is available on GitHub.
Advances in next-generation sequencing technology have enabled the high-throughput profiling of metagenomes and accelerated the microbiome study. Recently, there has been a rise in quantitative studies that aim to decipher the microbiome co-occurrence network and its underlying community structure based on metagenomic sequence data. Uncovering the complex microbiome community structure is essential to understanding the role of the microbiome in disease progression and susceptibility. Taxonomic abundance data generated from metagenomic sequencing technologies are high-dimensional and compositional, suffering from uneven sampling depth, over-dispersion, and zero-inflation. These characteristics often challenge the reliability of the current methods for microbiome community detection. To this end, we propose a Bayesian stochastic block model to study the microbiome co-occurrence network based on the recently developed modified centered-log ratio transformation tailored for microbiome data analysis. Our model allows us to incorporate taxonomic tree information using a Markov random field prior. The model parameters are jointly inferred by using Markov chain Monte Carlo sampling techniques. Our simulation study showed that the proposed approach performs better than competing methods even when taxonomic tree information is non-informative. We applied our approach to a real urinary microbiome dataset from postmenopausal women, the first time the urinary microbiome co-occurrence network structure has been studied. In summary, this statistical methodology provides a new tool for facilitating advanced microbiome studies.
We propose a scheme based on active learning to reconstruct private strategies executed by a population of interacting agents and predict an exact outcome of the underlying multi-agent interaction process, here identified as a stationary action profile. We envision a scenario where an external observer, endowed with a learning procedure, can make queries and observe the agents' reactions through private action-reaction mappings, whose collective fixed point corresponds to a stationary profile. By iteratively collecting sensible data and updating parametric estimates of the action-reaction mappings, we establish sufficient conditions to assess the asymptotic properties of the proposed active learning methodology so that, if convergence happens, it can only be towards a stationary action profile. This fact yields two main consequences: i) learning locally-exact surrogates of the action-reaction mappings allows the external observer to succeed in its prediction task, and ii) working with assumptions so general that a stationary profile is not even guaranteed to exist, the established sufficient conditions hence act also as certificates for the existence of such a desirable profile. Extensive numerical simulations involving typical competitive multi-agent control and decision-making problems illustrate the practical effectiveness of the proposed learning-based approach.
The numerical solution of continuum damage mechanics (CDM) problems suffers from critical points during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. Displacement-controlled arc-length methods were developed to address these challenges, but are currently applicable only to geometrically non-linear problems. In this work, we present a novel displacement-controlled arc-length (DAL) method for CDM problems in both local damage and non-local gradient damage versions. The analytical tangent matrix is derived for the DAL solver in both of the local and the non-local models. In addition, several consistent and non-consistent implementation algorithms are proposed, implemented, and evaluated. Unlike existing force-controlled arc-length solvers that monolithically scale the external force vector, the proposed method treats the external force vector as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. Such a flexible approach renders the proposed solver to be substantially more efficient and versatile than existing solvers used in CDM problems. The considerable advantages of the proposed DAL algorithm are demonstrated against several benchmark 1D problems with sharp snap-backs and 2D examples with various boundary conditions and loading scenarios, where the proposed method drastically outperforms existing conventional approaches in terms of accuracy, computational efficiency, and the ability to predict the complete equilibrium path including all critical points.
The Bayesian inference approach is widely used to tackle inverse problems due to its versatile and natural ability to handle ill-posedness. However, it often faces challenges when dealing with situations involving continuous fields or large-resolution discrete representations (high-dimensional). Moreover, the prior distribution of unknown parameters is commonly difficult to be determined. In this study, an Operator Learning-based Generative Adversarial Network (OL-GAN) is proposed and integrated into the Bayesian inference framework to handle these issues. Unlike most Bayesian approaches, the distinctive characteristic of the proposed method is to learn the joint distribution of parameters and responses. By leveraging the trained generative model, the posteriors of the unknown parameters can theoretically be approximated by any sampling algorithm (e.g., Markov Chain Monte Carlo, MCMC) in a low-dimensional latent space shared by the components of the joint distribution. The latent space is typically a simple and easy-to-sample distribution (e.g., Gaussian, uniform), which significantly reduces the computational cost associated with the Bayesian inference while avoiding prior selection concerns. Furthermore, incorporating operator learning enables resolution-independent in the generator. Predictions can be obtained at desired coordinates, and inversions can be performed even if the observation data are misaligned with the training data. Finally, the effectiveness of the proposed method is validated through several numerical experiments.
Machine learning techniques, in particular the so-called normalizing flows, are becoming increasingly popular in the context of Monte Carlo simulations as they can effectively approximate target probability distributions. In the case of lattice field theories (LFT) the target distribution is given by the exponential of the action. The common loss function's gradient estimator based on the "reparametrization trick" requires the calculation of the derivative of the action with respect to the fields. This can present a significant computational cost for complicated, non-local actions like e.g. fermionic action in QCD. In this contribution, we propose an estimator for normalizing flows based on the REINFORCE algorithm that avoids this issue. We apply it to two dimensional Schwinger model with Wilson fermions at criticality and show that it is up to ten times faster in terms of the wall-clock time as well as requiring up to $30\%$ less memory than the reparameterization trick estimator. It is also more numerically stable allowing for single precision calculations and the use of half-float tensor cores. We present an in-depth analysis of the origins of those improvements. We believe that these benefits will appear also outside the realm of the LFT, in each case where the target probability distribution is computationally intensive.
In the context of Discontinuous Galerkin methods, we study approximations of nonlinear variational problems associated with convex energies. We propose element-wise nonconforming finite element methods to discretize the continuous minimisation problem. Using $\Gamma$-convergence arguments we show that the discrete minimisers converge to the unique minimiser of the continuous problem as the mesh parameter tends to zero, under the additional contribution of appropriately defined penalty terms at the level of the discrete energies. We finally substantiate the feasibility of our methods by numerical examples.
Early sensory systems in the brain rapidly adapt to fluctuating input statistics, which requires recurrent communication between neurons. Mechanistically, such recurrent communication is often indirect and mediated by local interneurons. In this work, we explore the computational benefits of mediating recurrent communication via interneurons compared with direct recurrent connections. To this end, we consider two mathematically tractable recurrent linear neural networks that statistically whiten their inputs -- one with direct recurrent connections and the other with interneurons that mediate recurrent communication. By analyzing the corresponding continuous synaptic dynamics and numerically simulating the networks, we show that the network with interneurons is more robust to initialization than the network with direct recurrent connections in the sense that the convergence time for the synaptic dynamics in the network with interneurons (resp. direct recurrent connections) scales logarithmically (resp. linearly) with the spectrum of their initialization. Our results suggest that interneurons are computationally useful for rapid adaptation to changing input statistics. Interestingly, the network with interneurons is an overparameterized solution of the whitening objective for the network with direct recurrent connections, so our results can be viewed as a recurrent linear neural network analogue of the implicit acceleration phenomenon observed in overparameterized feedforward linear neural networks.
In many scientific applications the aim is to infer a function which is smooth in some areas, but rough or even discontinuous in other areas of its domain. Such spatially inhomogeneous functions can be modelled in Besov spaces with suitable integrability parameters. In this work we study adaptive Bayesian inference over Besov spaces, in the white noise model from the point of view of rates of contraction, using $p$-exponential priors, which range between Laplace and Gaussian and possess regularity and scaling hyper-parameters. To achieve adaptation, we employ empirical and hierarchical Bayes approaches for tuning these hyper-parameters. Our results show that, while it is known that Gaussian priors can attain the minimax rate only in Besov spaces of spatially homogeneous functions, Laplace priors attain the minimax or nearly the minimax rate in both Besov spaces of spatially homogeneous functions and Besov spaces permitting spatial inhomogeneities.
The design of automatic speech pronunciation assessment can be categorized into closed and open response scenarios, each with strengths and limitations. A system with the ability to function in both scenarios can cater to diverse learning needs and provide a more precise and holistic assessment of pronunciation skills. In this study, we propose a Multi-task Pronunciation Assessment model called MultiPA. MultiPA provides an alternative to Kaldi-based systems in that it has simpler format requirements and better compatibility with other neural network models. Compared with previous open response systems, MultiPA provides a wider range of evaluations, encompassing assessments at both the sentence and word-level. Our experimental results show that MultiPA achieves comparable performance when working in closed response scenarios and maintains more robust performance when directly used for open responses.
Gottfried Leibniz embarked on a research program to prove all the Aristotelic categorical syllogisms by diagrammatic and algebraic methods. He succeeded in proving them by means of Euler diagrams, but didn't produce a manuscript with their algebraic proofs. We demonstrate how key excerpts scattered across various Leibniz's drafts on logic contained sufficient ingredients to prove them by an algebraic method -- which we call the Leibniz-Cayley (LC) system -- without having to make use of the more expressive and complex machinery of first-order quantificational logic. In addition, we prove the classic categorical syllogisms again by a relational method -- which we call the McColl-Ladd (ML) system -- employing categorical relations studied by Hugh McColl and Christine Ladd. Finally, we show the connection of ML and LC with Boolean algebra, proving that ML is a consequence of LC, and that LC is a consequence of the Boolean lattice axioms, thus establishing Leibniz's historical priority over George Boole in characterizing and applying (a sufficient fragment of) Boolean algebra to effectively tackle categorical syllogistic.