亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Both two-valued and three-valued conditional logic (CL), defined by Guzm\'an and Squier (1990) and based on McCarthy's non-commutative connectives, axiomatise a short-circuit logic (SCL) that defines more identities than MSCL (Memorising SCL), which also has a two- and a three-valued variant. This follows from the fact that the definable connective that prescribes full left-sequential conjunction is commutative in CL. We show that in CL, the full left-sequential connectives and negation define Bochvar's three-valued strict logic. In two-valued CL, the full left-sequential connectives and negation define a commutative logic that is weaker than propositional logic because the absorption laws do not hold. Next, we show that the original, equational axiomatisation of CL is not independent and give several alternative, independent axiomatisations.

相關內容

We consider a fourth order, reaction-diffusion type, singularly perturbed boundary value problem, and the regularity of its solution. Specifically, we provide estimates for arbitrary order derivatves, which are explicit in the singular perturbation parameter as well as the differentiation order. Such estimates are needed for the numerical analysis of high order methods, e.g.hp Finite Element Method (FEM).

Hutchinson's estimator is a randomized algorithm that computes an $\epsilon$-approximation to the trace of any positive semidefinite matrix using $\mathcal{O}(1/\epsilon^2)$ matrix-vector products. An improvement of Hutchinson's estimator, known as Hutch++, only requires $\mathcal{O}(1/\epsilon)$ matrix-vector products. In this paper, we propose a generalization of Hutch++, which we call ContHutch++, that uses operator-function products to efficiently estimate the trace of any trace-class integral operator. Our ContHutch++ estimates avoid spectral artifacts introduced by discretization and are accompanied by rigorous high-probability error bounds. We use ContHutch++ to derive a new high-order accurate algorithm for quantum density-of-states and also show how it can estimate electromagnetic fields induced by incoherent sources.

Learning nonparametric systems of Ordinary Differential Equations (ODEs) dot x = f(t,x) from noisy data is an emerging machine learning topic. We use the well-developed theory of Reproducing Kernel Hilbert Spaces (RKHS) to define candidates for f for which the solution of the ODE exists and is unique. Learning f consists of solving a constrained optimization problem in an RKHS. We propose a penalty method that iteratively uses the Representer theorem and Euler approximations to provide a numerical solution. We prove a generalization bound for the L2 distance between x and its estimator and provide experimental comparisons with the state-of-the-art.

Approximated forms of the RII and RIII redistribution matrices are frequently applied to simplify the numerical solution of the radiative transfer problem for polarized radiation, taking partial frequency redistribution (PRD) effects into account. A widely used approximation for RIII is to consider its expression under the assumption of complete frequency redistribution (CRD) in the observer frame (RIII CRD). The adequacy of this approximation for modeling the intensity profiles has been firmly established. By contrast, its suitability for modeling scattering polarization signals has only been analyzed in a few studies, considering simplified settings. In this work, we aim at quantitatively assessing the impact and the range of validity of the RIII CRD approximation in the modeling of scattering polarization. Methods. We first present an analytic comparison between RIII and RIII CRD. We then compare the results of radiative transfer calculations, out of local thermodynamic equilibrium, performed with RIII and RIII CRD in realistic 1D atmospheric models. We focus on the chromospheric Ca i line at 4227 A and on the photospheric Sr i line at 4607 A.

We extend our formulation of Merge and Minimalism in terms of Hopf algebras to an algebraic model of a syntactic-semantic interface. We show that methods adopted in the formulation of renormalization (extraction of meaningful physical values) in theoretical physics are relevant to describe the extraction of meaning from syntactic expressions. We show how this formulation relates to computational models of semantics and we answer some recent controversies about implications for generative linguistics of the current functioning of large language models.

We present a space-time ultra-weak discontinuous Galerkin discretization of the linear Schr\"odinger equation with variable potential. The proposed method is well-posed and quasi-optimal in mesh-dependent norms for very general discrete spaces. Optimal $h$-convergence error estimates are derived for the method when test and trial spaces are chosen either as piecewise polynomials, or as a novel quasi-Trefftz polynomial space. The latter allows for a substantial reduction of the number of degrees of freedom and admits piecewise-smooth potentials. Several numerical experiments validate the accuracy and advantages of the proposed method.

This document describes an algorithm to scale a complex vector by the reciprocal of a complex value. The algorithm computes the reciprocal of the complex value and then scales the vector by the reciprocal. Some scaling may be necessary due to this 2-step strategy, and the proposed algorithm takes scaling into account. This algorithm is supposed to be faster than the naive approach of dividing each entry of the vector by the complex value, without losing much accuracy. It also serves as a single strategy for scaling vectors by the reciprocal of a complex value, which improves the software maintainability.

Regev recently introduced a quantum factoring algorithm that may be perceived as a $d$-dimensional variation of Shor's factoring algorithm. In this work, we extend Regev's factoring algorithm to an algorithm for computing discrete logarithms in a natural way. Furthermore, we discuss natural extensions of Regev's factoring algorithm to order finding, and to factoring completely via order finding.

We consider the general problem of Bayesian binary regression and we introduce a new class of distributions, the Perturbed Unified Skew Normal (pSUN, henceforth), which generalizes the Unified Skew-Normal (SUN) class. We show that the new class is conjugate to any binary regression model, provided that the link function may be expressed as a scale mixture of Gaussian densities. We discuss in detail the popular logit case, and we show that, when a logistic regression model is combined with a Gaussian prior, posterior summaries such as cumulants and normalizing constants can be easily obtained through the use of an importance sampling approach, opening the way to straightforward variable selection procedures. For more general priors, the proposed methodology is based on a simple Gibbs sampler algorithm. We also claim that, in the p > n case, the proposed methodology shows better performances - both in terms of mixing and accuracy - compared to the existing methods. We illustrate the performance through several simulation studies and two data analyses.

We consider an unknown multivariate function representing a system-such as a complex numerical simulator-taking both deterministic and uncertain inputs. Our objective is to estimate the set of deterministic inputs leading to outputs whose probability (with respect to the distribution of the uncertain inputs) of belonging to a given set is less than a given threshold. This problem, which we call Quantile Set Inversion (QSI), occurs for instance in the context of robust (reliability-based) optimization problems, when looking for the set of solutions that satisfy the constraints with sufficiently large probability. To solve the QSI problem, we propose a Bayesian strategy based on Gaussian process modeling and the Stepwise Uncertainty Reduction (SUR) principle, to sequentially choose the points at which the function should be evaluated to efficiently approximate the set of interest. We illustrate the performance and interest of the proposed SUR strategy through several numerical experiments.

北京阿比特科技有限公司