亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advancements in imitation learning have been largely fueled by the integration of sequence models, which provide a structured flow of information to effectively mimic task behaviours. Currently, Decision Transformer (DT) and subsequently, the Hierarchical Decision Transformer (HDT), presented Transformer-based approaches to learn task policies. Recently, the Mamba architecture has shown to outperform Transformers across various task domains. In this work, we introduce two novel methods, Decision Mamba (DM) and Hierarchical Decision Mamba (HDM), aimed at enhancing the performance of the Transformer models. Through extensive experimentation across diverse environments such as OpenAI Gym and D4RL, leveraging varying demonstration data sets, we demonstrate the superiority of Mamba models over their Transformer counterparts in a majority of tasks. Results show that HDM outperforms other methods in most settings. The code can be found at //github.com/meowatthemoon/HierarchicalDecisionMamba.

相關內容

We introduce the first continuous-time score-based generative model that leverages fractional diffusion processes for its underlying dynamics. Although diffusion models have excelled at capturing data distributions, they still suffer from various limitations such as slow convergence, mode-collapse on imbalanced data, and lack of diversity. These issues are partially linked to the use of light-tailed Brownian motion (BM) with independent increments. In this paper, we replace BM with an approximation of its non-Markovian counterpart, fractional Brownian motion (fBM), characterized by correlated increments and Hurst index $H \in (0,1)$, where $H=1/2$ recovers the classical BM. To ensure tractable inference and learning, we employ a recently popularized Markov approximation of fBM (MA-fBM) and derive its reverse time model, resulting in generative fractional diffusion models (GFDMs). We characterize the forward dynamics using a continuous reparameterization trick and propose an augmented score matching loss to efficiently learn the score-function, which is partly known in closed form, at minimal added cost. The ability to drive our diffusion model via fBM provides flexibility and control. $H \leq 1/2$ enters the regime of rough paths whereas $H>1/2$ regularizes diffusion paths and invokes long-term memory as well as a heavy-tailed behaviour (super-diffusion). The Markov approximation allows added control by varying the number of Markov processes linearly combined to approximate fBM. Our evaluations on real image datasets demonstrate that GFDM achieves greater pixel-wise diversity and enhanced image quality, as indicated by a lower FID, offering a promising alternative to traditional diffusion models.

Numerous approaches have been recently proposed for learning fair representations that mitigate unfair outcomes in prediction tasks. A key motivation for these methods is that the representations can be used by third parties with unknown objectives. However, because current fair representations are generally not interpretable, the third party cannot use these fair representations for exploration, or to obtain any additional insights, besides the pre-contracted prediction tasks. Thus, to increase data utility beyond prediction tasks, we argue that the representations need to be fair, yet interpretable. We propose a general framework for learning interpretable fair representations by introducing an interpretable "prior knowledge" during the representation learning process. We implement this idea and conduct experiments with ColorMNIST and Dsprite datasets. The results indicate that in addition to being interpretable, our representations attain slightly higher accuracy and fairer outcomes in a downstream classification task compared to state-of-the-art fair representations.

A wide range of machine learning algorithms iteratively add data to the training sample. Examples include semi-supervised learning, active learning, multi-armed bandits, and Bayesian optimization. We embed this kind of data addition into decision theory by framing data selection as a decision problem. This paves the way for finding Bayes-optimal selections of data. For the illustrative case of self-training in semi-supervised learning, we derive the respective Bayes criterion. We further show that deploying this criterion mitigates the issue of confirmation bias by empirically assessing our method for generalized linear models, semi-parametric generalized additive models, and Bayesian neural networks on simulated and real-world data.

Streaming feature selection techniques have become essential in processing real-time data streams, as they facilitate the identification of the most relevant attributes from continuously updating information. Despite their performance, current algorithms to streaming feature selection frequently fall short in managing biases and avoiding discrimination that could be perpetuated by sensitive attributes, potentially leading to unfair outcomes in the resulting models. To address this issue, we propose FairSFS, a novel algorithm for Fair Streaming Feature Selection, to uphold fairness in the feature selection process without compromising the ability to handle data in an online manner. FairSFS adapts to incoming feature vectors by dynamically adjusting the feature set and discerns the correlations between classification attributes and sensitive attributes from this revised set, thereby forestalling the propagation of sensitive data. Empirical evaluations show that FairSFS not only maintains accuracy that is on par with leading streaming feature selection methods and existing fair feature techniques but also significantly improves fairness metrics.

Sample efficiency is critical when applying learning-based methods to robotic manipulation due to the high cost of collecting expert demonstrations and the challenges of on-robot policy learning through online Reinforcement Learning (RL). Offline RL addresses this issue by enabling policy learning from an offline dataset collected using any behavioral policy, regardless of its quality. However, recent advancements in offline RL have predominantly focused on learning from large datasets. Given that many robotic manipulation tasks can be formulated as rotation-symmetric problems, we investigate the use of $SO(2)$-equivariant neural networks for offline RL with a limited number of demonstrations. Our experimental results show that equivariant versions of Conservative Q-Learning (CQL) and Implicit Q-Learning (IQL) outperform their non-equivariant counterparts. We provide empirical evidence demonstrating how equivariance improves offline learning algorithms in the low-data regime.

A wide range of machine learning algorithms iteratively add data to the training sample. Examples include semi-supervised learning, active learning, multi-armed bandits, and Bayesian optimization. We embed this kind of data addition into decision theory by framing data selection as a decision problem. This paves the way for finding Bayes-optimal selections of data. For the illustrative case of self-training in semi-supervised learning, we derive the respective Bayes criterion. We further show that deploying this criterion mitigates the issue of confirmation bias by empirically assessing our method for generalized linear models, semi-parametric generalized additive models, and Bayesian neural networks on simulated and real-world data.

Benchmarks for large multimodal language models (MLMs) now serve to simultaneously assess the general capabilities of models instead of evaluating for a specific capability. As a result, when a developer wants to identify which models to use for their application, they are overwhelmed by the number of benchmarks and remain uncertain about which benchmark's results are most reflective of their specific use case. This paper introduces Task-Me-Anything, a benchmark generation engine which produces a benchmark tailored to a user's needs. Task-Me-Anything maintains an extendable taxonomy of visual assets and can programmatically generate a vast number of task instances. Additionally, it algorithmically addresses user queries regarding MLM performance efficiently within a computational budget. It contains 113K images, 10K videos, 2K 3D object assets, over 365 object categories, 655 attributes, and 335 relationships. It can generate 750M image/video question-answering pairs, which focus on evaluating MLM perceptual capabilities. Task-Me-Anything reveals critical insights: open-source MLMs excel in object and attribute recognition but lack spatial and temporal understanding; each model exhibits unique strengths and weaknesses; larger models generally perform better, though exceptions exist; and GPT4o demonstrates challenges in recognizing rotating/moving objects and distinguishing colors.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

北京阿比特科技有限公司