亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Malicious perturbations embedded in input data, known as Trojan attacks, can cause neural networks to misbehave. However, the impact of a Trojan attack is reduced during fine-tuning of the model, which involves transferring knowledge from a pretrained large-scale model like visual question answering (VQA) to the target model. To mitigate the effects of a Trojan attack, replacing and fine-tuning multiple layers of the pretrained model is possible. This research focuses on sample efficiency, stealthiness and variation, and robustness to model fine-tuning. To address these challenges, we propose an instance-level Trojan attack that generates diverse Trojans across input samples and modalities. Adversarial learning establishes a correlation between a specified perturbation layer and the misbehavior of the fine-tuned model. We conducted extensive experiments on the VQA-v2 dataset using a range of metrics. The results show that our proposed method can effectively adapt to a fine-tuned model with minimal samples. Specifically, we found that a model with a single fine-tuning layer can be compromised using a single shot of adversarial samples, while a model with more fine-tuning layers can be compromised using only a few shots.

相關內容

視覺問答(Visual Question Answering,VQA),是一種涉及計算機視覺和自然語言處理的學習任務。這一任務的定義如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻譯為中文:一個VQA系統以一張圖片和一個關于這張圖片形式自由、開放式的自然語言問題作為輸入,以生成一條自然語言答案作為輸出。簡單來說,VQA就是給定的圖片進行問答。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Recently, diffusion models have been successfully applied to improving adversarial robustness of image classifiers by purifying the adversarial noises or generating realistic data for adversarial training. However, the diffusion-based purification can be evaded by stronger adaptive attacks while adversarial training does not perform well under unseen threats, exhibiting inevitable limitations of these methods. To better harness the expressive power of diffusion models, in this paper we propose Robust Diffusion Classifier (RDC), a generative classifier that is constructed from a pre-trained diffusion model to be adversarially robust. Our method first maximizes the data likelihood of a given input and then predicts the class probabilities of the optimized input using the conditional likelihood of the diffusion model through Bayes' theorem. Since our method does not require training on particular adversarial attacks, we demonstrate that it is more generalizable to defend against multiple unseen threats. In particular, RDC achieves $73.24\%$ robust accuracy against $\ell_\infty$ norm-bounded perturbations with $\epsilon_\infty=8/255$ on CIFAR-10, surpassing the previous state-of-the-art adversarial training models by $+2.34\%$. The findings highlight the potential of generative classifiers by employing diffusion models for adversarial robustness compared with the commonly studied discriminative classifiers.

With the emergence of more powerful large language models (LLMs), such as ChatGPT and GPT-4, in-context learning (ICL) has gained significant prominence in leveraging these models for specific tasks by utilizing data-label pairs as precondition prompts. While incorporating demonstrations can greatly enhance the performance of LLMs across various tasks, it may introduce a new security concern: attackers can manipulate only the demonstrations without changing the input to perform an attack. In this paper, we investigate the security concern of ICL from an adversarial perspective, focusing on the impact of demonstrations. We propose an ICL attack based on TextAttack, which aims to only manipulate the demonstration without changing the input to mislead the models. Our results demonstrate that as the number of demonstrations increases, the robustness of in-context learning would decreases. Furthermore, we also observe that adversarially attacked demonstrations exhibit transferability to diverse input examples. These findings emphasize the critical security risks associated with ICL and underscore the necessity for extensive research on the robustness of ICL, particularly given its increasing significance in the advancement of LLMs.

The ultimate goal for foundation models is realizing task-agnostic, i.e., supporting out-of-the-box usage without task-specific fine-tuning. Although breakthroughs have been made in natural language processing and image representation learning, it is still challenging for video models to reach it due to the increasing uncertainty of spatiotemporal signals. To ease training, existing works leverage image foundation models' prior knowledge and equip them with efficient temporal modules. Despite the satisfactory fine-tuning performance, we empirically find they fall short of out-of-the-box usage, given the even degraded performance in zero-shot/linear protocols compared to their baseline counterparts. In this work, we analyze the factor that leads to degradation from the perspective of language supervision distortion. We argue that tuning a text encoder end-to-end, as done in previous work, is suboptimal since it may overfit in terms of styles, thereby losing its original generalization ability to capture the semantics of various language registers. The overfitted text encoder, in turn, provides a harmful supervision signal, degrading the video representation. To tackle this issue, we propose a degradation-free pre-training strategy to retain the generalization ability of the text encoder via freezing shallow layers while enabling the task-related semantics capturing in tunable deep layers. As for the training objective, we adopted the transcript sorting task in TVTS incorporated with masking techniques to enable scalable training. As a result, we produce a series of models, dubbed TVTSv2, with up to one billion parameters. We achieve new state-of-the-arts on various video benchmarks with a frozen backbone, surpassing the recent ImageBind, InternVideo, etc. Code is available at //github.com/TencentARC/TVTS.

The increasingly pervasive facial recognition (FR) systems raise serious concerns about personal privacy, especially for billions of users who have publicly shared their photos on social media. Several attempts have been made to protect individuals from unauthorized FR systems utilizing adversarial attacks to generate encrypted face images to protect users from being identified by FR systems. However, existing methods suffer from poor visual quality or low attack success rates, which limit their usability in practice. In this paper, we propose Attribute Guided Encryption with Facial Texture Masking (AGE-FTM) that performs a dual manifold adversarial attack on FR systems to achieve both good visual quality and high black box attack success rates. In particular, AGE-FTM utilizes a high fidelity generative adversarial network (GAN) to generate natural on-manifold adversarial samples by modifying facial attributes, and performs the facial texture masking attack to generate imperceptible off-manifold adversarial samples. Extensive experiments on the CelebA-HQ dataset demonstrate that our proposed method produces more natural-looking encrypted images than state-of-the-art methods while achieving competitive attack performance. We further evaluate the effectiveness of AGE-FTM in the real world using a commercial FR API and validate its usefulness in practice through an user study.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images. Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation. Code is available at: //git.io/AdelaiDet

We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.

北京阿比特科技有限公司