Urban environments offer a challenging scenario for autonomous driving. Globally localizing information, such as a GPS signal, can be unreliable due to signal shadowing and multipath errors. Detailed a priori maps of the environment with sufficient information for autonomous navigation typically require driving the area multiple times to collect large amounts of data, substantial post-processing on that data to obtain the map, and then maintaining updates on the map as the environment changes. This dissertation addresses the issue of autonomous driving in an urban environment by investigating algorithms and an architecture to enable fully functional autonomous driving with limited information.
In this work, we present a rigorous end-to-end control strategy for autonomous vehicles aimed at minimizing lap times in a time attack racing event. We also introduce AutoRACE Simulator developed as a part of this research project, which was employed to simulate accurate vehicular and environmental dynamics along with realistic audio-visual effects. We adopted a hybrid imitation-reinforcement learning architecture and crafted a novel reward function to train a deep neural network policy to drive (using imitation learning) and race (using reinforcement learning) a car autonomously in less than 20 hours. Deployment results were reported as a direct comparison of 10 autonomous laps against 100 manual laps by 10 different human players. The autonomous agent not only exhibited superior performance by gaining 0.96 seconds over the best manual lap, but it also dominated the human players by 1.46 seconds with regard to the mean lap time. This dominance could be justified in terms of better trajectory optimization and lower reaction time of the autonomous agent.
Efficient processing of high-res video streams is safety-critical for many robotics applications such as autonomous driving. To maintain real-time performance, many practical systems downsample the video stream. But this can hurt downstream tasks such as (small) object detection. Instead, we take inspiration from biological vision systems that allocate more foveal "pixels" to salient parts of the scene. We introduce FOVEA, an approach for intelligent downsampling that ensures salient image regions remain "magnified" in the downsampled output. Given a high-res image, FOVEA applies a differentiable resampling layer that outputs a small fixed-size image canvas, which is then processed with a differentiable vision module (e.g., object detection network), whose output is then differentiably backward mapped onto the original image size. The key idea is to resample such that background pixels can make room for salient pixels of interest. In order to ensure the overall pipeline remains efficient, FOVEA makes use of cheap and readily available cues for saliency, including dataset-specific spatial priors or temporal priors computed from object predictions in the recent past. On the autonomous driving datasets Argoverse-HD and BDD100K, our proposed method boosts the detection AP over standard Faster R-CNN, both with and without finetuning. Without any noticeable increase in compute, we improve accuracy on small objects by over 2x without degrading performance on large objects. Finally, FOVEA sets a new record for streaming AP (from 17.8 to 23.0 on a GTX 1080 Ti GPU), a metric designed to capture both accuracy and latency.
"Embodied visual navigation" problem requires an agent to navigate in a 3D environment mainly rely on its first-person observation. This problem has attracted rising attention in recent years due to its wide application in autonomous driving, vacuum cleaner, and rescue robot. A navigation agent is supposed to have various intelligent skills, such as visual perceiving, mapping, planning, exploring and reasoning, etc. Building such an agent that observes, thinks, and acts is a key to real intelligence. The remarkable learning ability of deep learning methods empowered the agents to accomplish embodied visual navigation tasks. Despite this, embodied visual navigation is still in its infancy since a lot of advanced skills are required, including perceiving partially observed visual input, exploring unseen areas, memorizing and modeling seen scenarios, understanding cross-modal instructions, and adapting to a new environment, etc. Recently, embodied visual navigation has attracted rising attention of the community, and numerous works has been proposed to learn these skills. This paper attempts to establish an outline of the current works in the field of embodied visual navigation by providing a comprehensive literature survey. We summarize the benchmarks and metrics, review different methods, analysis the challenges, and highlight the state-of-the-art methods. Finally, we discuss unresolved challenges in the field of embodied visual navigation and give promising directions in pursuing future research.
While imitation learning for vision based autonomous mobile robot navigation has recently received a great deal of attention in the research community, existing approaches typically require state action demonstrations that were gathered using the deployment platform. However, what if one cannot easily outfit their platform to record these demonstration signals or worse yet the demonstrator does not have access to the platform at all? Is imitation learning for vision based autonomous navigation even possible in such scenarios? In this work, we hypothesize that the answer is yes and that recent ideas from the Imitation from Observation (IfO) literature can be brought to bear such that a robot can learn to navigate using only ego centric video collected by a demonstrator, even in the presence of viewpoint mismatch. To this end, we introduce a new algorithm, Visual Observation only Imitation Learning for Autonomous navigation (VOILA), that can successfully learn navigation policies from a single video demonstration collected from a physically different agent. We evaluate VOILA in the photorealistic AirSim simulator and show that VOILA not only successfully imitates the expert, but that it also learns navigation policies that can generalize to novel environments. Further, we demonstrate the effectiveness of VOILA in a real world setting by showing that it allows a wheeled Jackal robot to successfully imitate a human walking in an environment using a video recorded using a mobile phone camera.
Curbs are one of the essential elements of urban and highway traffic environments. Robust curb detection provides road structure information for motion planning in an autonomous driving system. Commonly, video cameras and 3D LiDARs are mounted on autonomous vehicles for curb detection. However, camera-based methods suffer from challenging illumination conditions. During the long period of time before wide application of Deep Neural Network (DNN) with point clouds, LiDAR-based curb detection methods are based on hand-crafted features, which suffer from poor detection in some complex scenes. Recently, DNN-based dynamic object detection using LiDAR data has become prevalent, while few works pay attention to curb detection with a DNN approach due to lack of labeled data. A dataset with curb annotations or an efficient curb labeling approach, hence, is of high demand...
Efficient reasoning about the semantic, spatial, and temporal structure of a scene is a crucial prerequisite for autonomous driving. We present NEural ATtention fields (NEAT), a novel representation that enables such reasoning for end-to-end imitation learning models. NEAT is a continuous function which maps locations in Bird's Eye View (BEV) scene coordinates to waypoints and semantics, using intermediate attention maps to iteratively compress high-dimensional 2D image features into a compact representation. This allows our model to selectively attend to relevant regions in the input while ignoring information irrelevant to the driving task, effectively associating the images with the BEV representation. In a new evaluation setting involving adverse environmental conditions and challenging scenarios, NEAT outperforms several strong baselines and achieves driving scores on par with the privileged CARLA expert used to generate its training data. Furthermore, visualizing the attention maps for models with NEAT intermediate representations provides improved interpretability.
Breakthroughs in machine learning in the last decade have led to `digital intelligence', i.e. machine learning models capable of learning from vast amounts of labeled data to perform several digital tasks such as speech recognition, face recognition, machine translation and so on. The goal of this thesis is to make progress towards designing algorithms capable of `physical intelligence', i.e. building intelligent autonomous navigation agents capable of learning to perform complex navigation tasks in the physical world involving visual perception, natural language understanding, reasoning, planning, and sequential decision making. Despite several advances in classical navigation methods in the last few decades, current navigation agents struggle at long-term semantic navigation tasks. In the first part of the thesis, we discuss our work on short-term navigation using end-to-end reinforcement learning to tackle challenges such as obstacle avoidance, semantic perception, language grounding, and reasoning. In the second part, we present a new class of navigation methods based on modular learning and structured explicit map representations, which leverage the strengths of both classical and end-to-end learning methods, to tackle long-term navigation tasks. We show that these methods are able to effectively tackle challenges such as localization, mapping, long-term planning, exploration and learning semantic priors. These modular learning methods are capable of long-term spatial and semantic understanding and achieve state-of-the-art results on various navigation tasks.
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.
Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.
We propose a 3D object detection method for autonomous driving by fully exploiting the sparse and dense, semantic and geometry information in stereo imagery. Our method, called Stereo R-CNN, extends Faster R-CNN for stereo inputs to simultaneously detect and associate object in left and right images. We add extra branches after stereo Region Proposal Network (RPN) to predict sparse keypoints, viewpoints, and object dimensions, which are combined with 2D left-right boxes to calculate a coarse 3D object bounding box. We then recover the accurate 3D bounding box by a region-based photometric alignment using left and right RoIs. Our method does not require depth input and 3D position supervision, however, outperforms all existing fully supervised image-based methods. Experiments on the challenging KITTI dataset show that our method outperforms the state-of-the-art stereo-based method by around 30% AP on both 3D detection and 3D localization tasks. Code will be made publicly available.