Imitation learning empowers artificial agents to mimic behavior by learning from demonstrations. Recently, diffusion models, which have the ability to model high-dimensional and multimodal distributions, have shown impressive performance on imitation learning tasks. These models learn to shape a policy by diffusing actions (or states) from standard Gaussian noise. However, the target policy to be learned is often significantly different from Gaussian and this mismatch can result in poor performance when using a small number of diffusion steps (to improve inference speed) and under limited data. The key idea in this work is that initiating from a more informative source than Gaussian enables diffusion methods to mitigate the above limitations. We contribute both theoretical results, a new method, and empirical findings that show the benefits of using an informative source policy. Our method, which we call BRIDGER, leverages the stochastic interpolants framework to bridge arbitrary policies, thus enabling a flexible approach towards imitation learning. It generalizes prior work in that standard Gaussians can still be applied, but other source policies can be used if available. In experiments on challenging simulation benchmarks and on real robots, BRIDGER outperforms state-of-the-art diffusion policies. We provide further analysis on design considerations when applying BRIDGER. //clear-nus.github.io/blog/bridger
This paper presents FedType, a simple yet pioneering framework designed to fill research gaps in heterogeneous model aggregation within federated learning (FL). FedType introduces small identical proxy models for clients, serving as agents for information exchange, ensuring model security, and achieving efficient communication simultaneously. To transfer knowledge between large private and small proxy models on clients, we propose a novel uncertainty-based asymmetrical reciprocity learning method, eliminating the need for any public data. Comprehensive experiments conducted on benchmark datasets demonstrate the efficacy and generalization ability of FedType across diverse settings. Our approach redefines federated learning paradigms by bridging model heterogeneity, eliminating reliance on public data, prioritizing client privacy, and reducing communication costs.
Federated Learning (FL) is a distributed machine learning approach that maintains data privacy by training on decentralized data sources. Similar to centralized machine learning, FL is also susceptible to backdoor attacks. Most backdoor attacks in FL assume a predefined target class and require control over a large number of clients or knowledge of benign clients' information. Furthermore, they are not imperceptible and are easily detected by human inspection due to clear artifacts left on the poison data. To overcome these challenges, we propose Venomancer, an effective backdoor attack that is imperceptible and allows target-on-demand. Specifically, imperceptibility is achieved by using a visual loss function to make the poison data visually indistinguishable from the original data. Target-on-demand property allows the attacker to choose arbitrary target classes via conditional adversarial training. Additionally, experiments showed that the method is robust against state-of-the-art defenses such as Norm Clipping, Weak DP, Krum, and Multi-Krum. The source code is available at //anonymous.4open.science/r/Venomancer-3426.
This study explores the application of self-supervised learning techniques for event sequences. It is a key modality in various applications such as banking, e-commerce, and healthcare. However, there is limited research on self-supervised learning for event sequences, and methods from other domains like images, texts, and speech may not easily transfer. To determine the most suitable approach, we conduct a detailed comparative analysis of previously identified best-performing methods. We find that neither the contrastive nor generative method is superior. Our assessment includes classifying event sequences, predicting the next event, and evaluating embedding quality. These results further highlight the potential benefits of combining both methods. Given the lack of research on hybrid models in this domain, we initially adapt the baseline model from another domain. However, upon observing its underperformance, we develop a novel method called the Multimodal-Learning Event Model (MLEM). MLEM treats contrastive learning and generative modeling as distinct yet complementary modalities, aligning their embeddings. The results of our study demonstrate that combining contrastive and generative approaches into one procedure with MLEM achieves superior performance across multiple metrics.
In causal inference, estimating Heterogeneous Treatment Effects (HTEs) from observational data is critical for understanding how different subgroups respond to treatments, with broad applications such as precision medicine and targeted advertising. However, existing work on HTE, subgroup discovery, and causal visualization is insufficient to address two challenges: first, the sheer number of potential subgroups and the necessity to balance multiple objectives (e.g., high effects and low variances) pose a considerable analytical challenge. Second, effective subgroup analysis has to follow the analysis goal specified by users and provide causal results with verification. To this end, we propose a visual analytics approach for subgroup-based causal heterogeneity exploration. Specifically, we first formulate causal subgroup discovery as a constrained multi-objective optimization problem and adopt a heuristic genetic algorithm to learn the Pareto front of optimal subgroups described by interpretable rules. Combining with this model, we develop a prototype system, CausalPrism, that incorporates tabular visualization, multi-attribute rankings, and uncertainty plots to support users in interactively exploring and sorting subgroups and explaining treatment effects. Quantitative experiments validate that the proposed model can efficiently mine causal subgroups that outperform state-of-the-art HTE and subgroup discovery methods, and case studies and expert interviews demonstrate the effectiveness and usability of the system. Code is available at //osf.io/jaqmf/?view_only=ac9575209945476b955bf829c85196e9.
AI regulations are expected to prohibit machine learning models from using sensitive attributes during training. However, the latest Natural Language Processing (NLP) classifiers, which rely on deep learning, operate as black-box systems, complicating the detection and remediation of such misuse. Traditional bias mitigation methods in NLP aim for comparable performance across different groups based on attributes like gender or race but fail to address the underlying issue of reliance on protected attributes. To partly fix that, we introduce NLPGuard, a framework for mitigating the reliance on protected attributes in NLP classifiers. NLPGuard takes an unlabeled dataset, an existing NLP classifier, and its training data as input, producing a modified training dataset that significantly reduces dependence on protected attributes without compromising accuracy. NLPGuard is applied to three classification tasks: identifying toxic language, sentiment analysis, and occupation classification. Our evaluation shows that current NLP classifiers heavily depend on protected attributes, with up to $23\%$ of the most predictive words associated with these attributes. However, NLPGuard effectively reduces this reliance by up to $79\%$, while slightly improving accuracy.
EEG-based brainprint recognition with deep learning models has garnered much attention in biometric identification. Yet, studies have indicated vulnerability to adversarial attacks in deep learning models with EEG inputs. In this paper, we introduce a novel adversarial attack method that jointly attacks time-domain and frequency-domain EEG signals by employing wavelet transform. Different from most existing methods which only target time-domain EEG signals, our method not only takes advantage of the time-domain attack's potent adversarial strength but also benefits from the imperceptibility inherent in frequency-domain attack, achieving a better balance between attack performance and imperceptibility. Extensive experiments are conducted in both white- and grey-box scenarios and the results demonstrate that our attack method achieves state-of-the-art attack performance on three datasets and three deep-learning models. In the meanwhile, the perturbations in the signals attacked by our method are barely perceptible to the human visual system.
The trustworthy machine learning (ML) community is increasingly recognizing the crucial need for models capable of selectively 'unlearning' data points after training. This leads to the problem of machine unlearning (MU), aiming to eliminate the influence of chosen data points on model performance, while still maintaining the model's utility post-unlearning. Despite various MU methods for data influence erasure, evaluations have largely focused on random data forgetting, ignoring the vital inquiry into which subset should be chosen to truly gauge the authenticity of unlearning performance. To tackle this issue, we introduce a new evaluative angle for MU from an adversarial viewpoint. We propose identifying the data subset that presents the most significant challenge for influence erasure, i.e., pinpointing the worst-case forget set. Utilizing a bi-level optimization principle, we amplify unlearning challenges at the upper optimization level to emulate worst-case scenarios, while simultaneously engaging in standard training and unlearning at the lower level, achieving a balance between data influence erasure and model utility. Our proposal offers a worst-case evaluation of MU's resilience and effectiveness. Through extensive experiments across different datasets (including CIFAR-10, 100, CelebA, Tiny ImageNet, and ImageNet) and models (including both image classifiers and generative models), we expose critical pros and cons in existing (approximate) unlearning strategies. Our results illuminate the complex challenges of MU in practice, guiding the future development of more accurate and robust unlearning algorithms. The code is available at //github.com/OPTML-Group/Unlearn-WorstCase.
Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.
Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.
The canonical approach to video-and-language learning (e.g., video question answering) dictates a neural model to learn from offline-extracted dense video features from vision models and text features from language models. These feature extractors are trained independently and usually on tasks different from the target domains, rendering these fixed features sub-optimal for downstream tasks. Moreover, due to the high computational overload of dense video features, it is often difficult (or infeasible) to plug feature extractors directly into existing approaches for easy finetuning. To provide a remedy to this dilemma, we propose a generic framework ClipBERT that enables affordable end-to-end learning for video-and-language tasks, by employing sparse sampling, where only a single or a few sparsely sampled short clips from a video are used at each training step. Experiments on text-to-video retrieval and video question answering on six datasets demonstrate that ClipBERT outperforms (or is on par with) existing methods that exploit full-length videos, suggesting that end-to-end learning with just a few sparsely sampled clips is often more accurate than using densely extracted offline features from full-length videos, proving the proverbial less-is-more principle. Videos in the datasets are from considerably different domains and lengths, ranging from 3-second generic domain GIF videos to 180-second YouTube human activity videos, showing the generalization ability of our approach. Comprehensive ablation studies and thorough analyses are provided to dissect what factors lead to this success. Our code is publicly available at //github.com/jayleicn/ClipBERT