亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding dynamics of hydrological responses is essential in producing skillful runoff forecast. This can be quantitatively done by tracking changes in hydrology model parameters that represent physical characteristics. In this study, we implement a Bayesian estimation method in continuously estimating hydrology model parameters given observations of rainfall and runoff for small watersheds. The method is coupled with a conceptual hydrology model using a Gamma distribution-based Instantaneous Unit Hydrograph. The whole analytical framework is tested using synthetic data as well as observational data from the Fall Creek watershed. The results show that the Bayesian method can well track the hidden parameters that change inter-annually. Then the model is applied to examine temporal and spatial variability of the rainfall-runoff responses and we find 1) a systematic shift in the rainfall-runoff response for the Fall Creek watershed around 1943 and 2) a statistically significant relationship between rainfall-runoff responses and watershed sizes for selected NY watersheds. Our results demonstrate potential of the Bayesian estimation method as a rapid surveillance tool in monitoring and tracking changes of hydrological responses for small watersheds.

相關內容

We consider the problem of counterfactual inference in sequentially designed experiments wherein a collection of $\mathbf{N}$ units each undergo a sequence of interventions for $\mathbf{T}$ time periods, based on policies that sequentially adapt over time. Our goal is counterfactual inference, i.e., estimate what would have happened if alternate policies were used, a problem that is inherently challenging due to the heterogeneity in the outcomes across units and time. To tackle this task, we introduce a suitable latent factor model where the potential outcomes are determined by exogenous unit and time level latent factors. Under suitable conditions, we show that it is possible to estimate the missing (potential) outcomes using a simple variant of nearest neighbors. First, assuming a bilinear latent factor model and allowing for an arbitrary adaptive sampling policy, we establish a distribution-free non-asymptotic guarantee for estimating the missing outcome of any unit at any time; under suitable regularity condition, this guarantee implies that our estimator is consistent. Second, for a generic non-parametric latent factor model, we establish that the estimate for the missing outcome of any unit at time $\mathbf{T}$ satisfies a central limit theorem as $\mathbf{T} \to \infty$, under suitable regularity conditions. Finally, en route to establishing this central limit theorem, we establish a non-asymptotic mean-squared-error bound for the estimate of the missing outcome of any unit at time $\mathbf{T}$. Our work extends the recently growing literature on inference with adaptively collected data by allowing for policies that pool across units, and also compliments the matrix completion literature when the entries are revealed sequentially in an arbitrarily dependent manner based on prior observed data.

Temperature field reconstruction is essential for analyzing satellite heat reliability. As a representative machine learning model, the deep convolutional neural network (DCNN) is a powerful tool for reconstructing the satellite temperature field. However, DCNN needs a lot of labeled data to learn its parameters, which is contrary to the fact that actual satellite engineering can only acquire noisy unlabeled data. To solve the above problem, this paper proposes an unsupervised method, i.e., the physics-informed deep Monte Carlo quantile regression method, for reconstructing temperature field and quantifying the aleatoric uncertainty caused by data noise. For one thing, the proposed method combines a deep convolutional neural network with the known physics knowledge to reconstruct an accurate temperature field using only monitoring point temperatures. For another thing, the proposed method can quantify the aleatoric uncertainty by the Monte Carlo quantile regression. Based on the reconstructed temperature field and the quantified aleatoric uncertainty, this paper models an interval multilevel Bayesian Network to analyze satellite heat reliability. Two case studies are used to validate the proposed method.

The performance of neural code search is significantly influenced by the quality of the training data from which the neural models are derived. A large corpus of high-quality query and code pairs is demanded to establish a precise mapping from the natural language to the programming language. Due to the limited availability, most widely-used code search datasets are established with compromise, such as using code comments as a replacement of queries. Our empirical study on a famous code search dataset reveals that over one-third of its queries contain noises that make them deviate from natural user queries. Models trained through noisy data are faced with severe performance degradation when applied in real-world scenarios. To improve the dataset quality and make the queries of its samples semantically identical to real user queries is critical for the practical usability of neural code search. In this paper, we propose a data cleaning framework consisting of two subsequent filters: a rule-based syntactic filter and a model-based semantic filter. This is the first framework that applies semantic query cleaning to code search datasets. Experimentally, we evaluated the effectiveness of our framework on two widely-used code search models and three manually-annotated code retrieval benchmarks. Training the popular DeepCS model with the filtered dataset from our framework improves its performance by 19.2% MRR and 21.3% Answer@1, on average with the three validation benchmarks.

In this work we aim to develop a unified mathematical framework and a reliable computational approach to model the brittle fracture in heterogeneous materials with variability in material microstructures, and to provide statistic metrics for quantities of interest, such as the fracture toughness. To depict the material responses and naturally describe the nucleation and growth of fractures, we consider the peridynamics model. In particular, a stochastic state-based peridynamic model is developed, where the micromechanical parameters are modeled by a finite-dimensional random vector, or a combination of random variables truncating the Karhunen-Lo\`{e}ve decomposition or the principle component analysis (PCA). To solve this stochastic peridynamic problem, probabilistic collocation method (PCM) is employed to sample the random field representing the micromechanical parameters. For each sample, the deterministic peridynamic problem is discretized with an optimization-based meshfree quadrature rule. We present rigorous analysis for the proposed scheme and demonstrate its convergence for a number of benchmark problems, showing that it sustains the asymptotic compatibility spatially and achieves an algebraic or sub-exponential convergence rate in the random space as the number of collocation points grows. Finally, to validate the applicability of this approach on real-world fracture problems, we consider the problem of crystallization toughening in glass-ceramic materials, in which the material at the microstructural scale contains both amorphous glass and crystalline phases. The proposed stochastic peridynamic solver is employed to capture the crack initiation and growth for glass-ceramics with different crystal volume fractions, and the averaged fracture toughness are calculated. The numerical estimates of fracture toughness show good consistency with experimental measurements.

Compared to the nominal scale, the ordinal scale for a categorical outcome variable has the property of making a monotonicity assumption for the covariate effects meaningful. This assumption is encoded in the commonly used proportional odds model, but there it is combined with other parametric assumptions such as linearity and additivity. Herein, the considered models are non-parametric and the only condition imposed is that the effects of the covariates on the outcome categories are stochastically monotone according to the ordinal scale. We are not aware of the existence of other comparable multivariable models that would be suitable for inference purposes. We generalize our previously proposed Bayesian monotonic multivariable regression model to ordinal outcomes, and propose an estimation procedure based on reversible jump Markov chain Monte Carlo. The model is based on a marked point process construction, which allows it to approximate arbitrary monotonic regression function shapes, and has a built-in covariate selection property. We study the performance of the proposed approach through extensive simulation studies, and demonstrate its practical application in two real data examples.

We propose a Bayesian elastic net that uses empirical likelihood and develop an efficient tuning of Hamiltonian Monte Carlo for posterior sampling. The proposed model relaxes the assumptions on the identity of the error distribution, performs well when the variables are highly correlated, and enables more straightforward inference by providing posterior distributions of the regression coefficients. The Hamiltonian Monte Carlo method implemented in Bayesian empirical likelihood overcomes the challenges that the posterior distribution lacks a closed analytic form and its domain is nonconvex. We develop the leapfrog parameter tuning algorithm for Bayesian empirical likelihood. We also show that the posterior distributions of the regression coefficients are asymptotically normal. Simulation studies and real data analysis demonstrate the advantages of the proposed method in prediction accuracy.

The dominant line of work in domain adaptation has focused on learning invariant representations using domain-adversarial training. In this paper, we interpret this approach from a game theoretical perspective. Defining optimal solutions in domain-adversarial training as a local Nash equilibrium, we show that gradient descent in domain-adversarial training can violate the asymptotic convergence guarantees of the optimizer, oftentimes hindering the transfer performance. Our analysis leads us to replace gradient descent with high-order ODE solvers (i.e., Runge-Kutta), for which we derive asymptotic convergence guarantees. This family of optimizers is significantly more stable and allows more aggressive learning rates, leading to high performance gains when used as a drop-in replacement over standard optimizers. Our experiments show that in conjunction with state-of-the-art domain-adversarial methods, we achieve up to 3.5% improvement with less than of half training iterations. Our optimizers are easy to implement, free of additional parameters, and can be plugged into any domain-adversarial framework.

Stochastic Gradient Descent (SGD) is the workhorse algorithm of deep learning technology. At each step of the training phase, a mini batch of samples is drawn from the training dataset and the weights of the neural network are adjusted according to the performance on this specific subset of examples. The mini-batch sampling procedure introduces a stochastic dynamics to the gradient descent, with a non-trivial state-dependent noise. We characterize the stochasticity of SGD and a recently-introduced variant, \emph{persistent} SGD, in a prototypical neural network model. In the under-parametrized regime, where the final training error is positive, the SGD dynamics reaches a stationary state and we define an effective temperature from the fluctuation-dissipation theorem, computed from dynamical mean-field theory. We use the effective temperature to quantify the magnitude of the SGD noise as a function of the problem parameters. In the over-parametrized regime, where the training error vanishes, we measure the noise magnitude of SGD by computing the average distance between two replicas of the system with the same initialization and two different realizations of SGD noise. We find that the two noise measures behave similarly as a function of the problem parameters. Moreover, we observe that noisier algorithms lead to wider decision boundaries of the corresponding constraint satisfaction problem.

We explore the application of super-resolution techniques to satellite imagery, and the effects of these techniques on object detection algorithm performance. Specifically, we enhance satellite imagery beyond its native resolution, and test if we can identify various types of vehicles, planes, and boats with greater accuracy than native resolution. Using the Very Deep Super-Resolution (VDSR) framework and a custom Random Forest Super-Resolution (RFSR) framework we generate enhancement levels of 2x, 4x, and 8x over five distinct resolutions ranging from 30 cm to 4.8 meters. Using both native and super-resolved data, we then train several custom detection models using the SIMRDWN object detection framework. SIMRDWN combines a number of popular object detection algorithms (e.g. SSD, YOLO) into a unified framework that is designed to rapidly detect objects in large satellite images. This approach allows us to quantify the effects of super-resolution techniques on object detection performance across multiple classes and resolutions. We also quantify the performance of object detection as a function of native resolution and object pixel size. For our test set we note that performance degrades from mAP = 0.5 at 30 cm resolution, down to mAP = 0.12 at 4.8 m resolution. Super-resolving native 30 cm imagery to 15 cm yields the greatest benefit; a 16-20% improvement in mAP. Super-resolution is less beneficial at coarser resolutions, though still provides a 3-10% improvement.

We study the use of the Wave-U-Net architecture for speech enhancement, a model introduced by Stoller et al for the separation of music vocals and accompaniment. This end-to-end learning method for audio source separation operates directly in the time domain, permitting the integrated modelling of phase information and being able to take large temporal contexts into account. Our experiments show that the proposed method improves several metrics, namely PESQ, CSIG, CBAK, COVL and SSNR, over the state-of-the-art with respect to the speech enhancement task on the Voice Bank corpus (VCTK) dataset. We find that a reduced number of hidden layers is sufficient for speech enhancement in comparison to the original system designed for singing voice separation in music. We see this initial result as an encouraging signal to further explore speech enhancement in the time-domain, both as an end in itself and as a pre-processing step to speech recognition systems.

北京阿比特科技有限公司