Semantic segmentation of point cloud usually relies on dense annotation that is exhausting and costly, so it attracts wide attention to investigate solutions for the weakly supervised scheme with only sparse points annotated. Existing works start from the given labels and propagate them to highly-related but unlabeled points, with the guidance of data, e.g. intra-point relation. However, it suffers from (i) the inefficient exploitation of data information, and (ii) the strong reliance on labels thus is easily suppressed when given much fewer annotations. Therefore, we propose a novel framework, PointMatch, that stands on both data and label, by applying consistency regularization to sufficiently probe information from data itself and leveraging weak labels as assistance at the same time. By doing so, meaningful information can be learned from both data and label for better representation learning, which also enables the model more robust to the extent of label sparsity. Simple yet effective, the proposed PointMatch achieves the state-of-the-art performance under various weakly-supervised schemes on both ScanNet-v2 and S3DIS datasets, especially on the settings with extremely sparse labels, e.g. surpassing SQN by 21.2% and 17.2% on the 0.01% and 0.1% setting of ScanNet-v2, respectively.
The relationship between electricity demand and weather is well established in power systems, along with the importance of behavioral and social aspects such as holidays and significant events. This study explores the link between electricity demand and more nuanced information about social events. This is done using mature Natural Language Processing (NLP) and demand forecasting techniques. The results indicate that day-ahead forecasts are improved by textual features such as word frequencies, public sentiments, topic distributions, and word embeddings. The social events contained in these features include global pandemics, politics, international conflicts, transportation, etc. Causality effects and correlations are discussed to propose explanations for the mechanisms behind the links highlighted. This study is believed to bring a new perspective to traditional electricity demand analysis. It confirms the feasibility of improving forecasts from unstructured text, with potential consequences for sociology and economics.
As deep neural networks are more commonly deployed in high-stakes domains, their lack of interpretability makes uncertainty quantification challenging. We investigate the effects of presenting conformal prediction sets$\unicode{x2013}$a method for generating valid confidence sets in distribution-free uncertainty quantification$\unicode{x2013}$to express uncertainty in AI-advised decision-making. Through a large online experiment, we compare the utility of conformal prediction sets to displays of Top-$1$ and Top-$k$ predictions for AI-advised image labeling. We find that the utility of prediction sets for accuracy varies with the difficulty of the task: while they result in accuracy on par with or less than Top-$1$ and Top-$k$ displays for easy images, prediction sets excel at assisting humans in labeling out-of-distribution (OOD) images especially when the set size is small. Our results empirically pinpoint the practical challenges of conformal prediction sets and provide implications on how to incorporate them for real-world decision-making.
Accurate and timely crop mapping is essential for yield estimation, insurance claims, and conservation efforts. Over the years, many successful machine learning models for crop mapping have been developed that use just the multi-spectral imagery from satellites to predict crop type over the area of interest. However, these traditional methods do not account for the physical processes that govern crop growth. At a high level, crop growth can be envisioned as physical parameters, such as weather and soil type, acting upon the plant leading to crop growth which can be observed via satellites. In this paper, we propose Weather-based Spatio-Temporal segmentation network with ATTention (WSTATT), a deep learning model that leverages this understanding of crop growth by formulating it as an inverse model that combines weather (Daymet) and satellite imagery (Sentinel-2) to generate accurate crop maps. We show that our approach provides significant improvements over existing algorithms that solely rely on spectral imagery by comparing segmentation maps and F1 classification scores. Furthermore, effective use of attention in WSTATT architecture enables detection of crop types earlier in the season (up to 5 months in advance), which is very useful for improving food supply projections. We finally discuss the impact of weather by correlating our results with crop phenology to show that WSTATT is able to capture physical properties of crop growth.
The ability for users to access quantum computers through the cloud has increased rapidly in recent years. Despite still being Noisy Intermediate-Scale Quantum (NISQ) machines, modern quantum computers are now being actively employed for research and by numerous startups. Quantum algorithms typically produce probabilistic results, necessitating repeated execution to produce the desired outcomes. In order for the execution to begin from the specified ground state each time and for the results of the prior execution not to interfere with the results of the subsequent execution, the reset mechanism must be performed between each iteration to effectively reset the qubits. However, due to noise and errors in quantum computers and specifically these reset mechanisms, a noisy reset operation may lead to systematic errors in the overall computation, as well as potential security and privacy vulnerabilities of information leakage. To counter this issue, we thoroughly examine the state leakage problem in quantum computing, and then propose a solution by employing the classical and quantum one-time pads before the reset mechanism to prevent the state leakage, which works by randomly applying simple gates for each execution of the circuit. In addition, this work explores conditions under which the classical one-time pad, which uses fewer resources, is sufficient to protect state leakage. Finally, we study the role of various errors in state leakage, by evaluating the degrees of leakage under different error levels of gate, measurement, and sampling errors. Our findings offer new perspectives on the design of reset mechanisms and secure quantum computing systems.
In recent years, the performance of point cloud models has been rapidly improved. However, due to the limited amount of relevant explainability studies, the unreliability and opacity of these black-box models may lead to potential risks in applications where human lives are at stake, e.g. autonomous driving or healthcare. This work proposes a DDPM-based point cloud global explainability method (DAM) that leverages Point Diffusion Transformer (PDT), a novel point-wise symmetric model, with dual-classifier guidance to generate high-quality global explanations. In addition, an adapted path gradient integration method for DAM is proposed, which not only provides a global overview of the saliency maps for point cloud categories, but also sheds light on how the attributions of the explanations vary during the generation process. Extensive experiments indicate that our method outperforms existing ones in terms of perceptibility, representativeness, and diversity, with a significant reduction in generation time. Our code is available at: //github.com/Explain3D/DAM
Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.
In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.