Long counseling Text Generation for Mental health support (LTGM), an innovative and challenging task, aims to provide help-seekers with mental health support through a comprehensive and more acceptable response. The combination of chain-of-thought (CoT) prompting and Large Language Models (LLMs) is employed and get the SOTA performance on various NLP tasks, especially on text generation tasks. Zero-shot CoT prompting is one of the most common methods in CoT prompting. However, in the LTGM task, Zero-shot CoT prompting can not simulate a counselor or provide personalized strategies without effective mental health counseling strategy prompts. To tackle this challenge, we propose a zero-shot Dynamic Strategy Chain (DSC) prompting method. Firstly, we utilize GPT2 to learn the responses written by mental health counselors and dynamically generate mental health counseling strategies tailored to the help-seekers' needs. Secondly, the Zero-shot DSC prompting is constructed according to mental health counseling strategies and the help-seekers' post. Finally, the Zero-shot DSC prompting is employed to guide LLMs in generating more human-like responses for the help-seekers. Both automatic and manual evaluations demonstrate that Zero-shot DSC prompting can deliver more human-like responses than CoT prompting methods on LTGM tasks.
As labor shortage increases in the health sector, the demand for assistive robotics grows. However, the needed test data to develop those robots is scarce, especially for the application of active 3D object detection, where no real data exists at all. This short paper counters this by introducing such an annotated dataset of real environments. The captured environments represent areas which are already in use in the field of robotic health care research. We further provide ground truth data within one room, for assessing SLAM algorithms running directly on a health care robot.
Model poisoning attacks greatly jeopardize the application of federated learning (FL). The effectiveness of existing defenses is susceptible to the latest model poisoning attacks, leading to a decrease in prediction accuracy. Besides, these defenses are intractable to distinguish benign outliers from malicious gradients, which further compromises the model generalization. In this work, we propose a novel proactive defense named RECESS against model poisoning attacks. Different from the passive analysis in previous defenses, RECESS proactively queries each participating client with a delicately constructed aggregation gradient, accompanied by the detection of malicious clients according to their responses with higher accuracy. Furthermore, RECESS uses a new trust scoring mechanism to robustly aggregate gradients. Unlike previous methods that score each iteration, RECESS considers clients' performance correlation across multiple iterations to estimate the trust score, substantially increasing fault tolerance. Finally, we extensively evaluate RECESS on typical model architectures and four datasets under various settings. We also evaluated the defensive effectiveness against other types of poisoning attacks, the sensitivity of hyperparameters, and adaptive adversarial attacks. Experimental results show the superiority of RECESS in terms of reducing accuracy loss caused by the latest model poisoning attacks over five classic and two state-of-the-art defenses.
In the mental health domain, Large Language Models (LLMs) offer promising new opportunities, though their inherent complexity and low controllability have raised questions about their suitability in clinical settings. We present MindfulDiary, a mobile journaling app incorporating an LLM to help psychiatric patients document daily experiences through conversation. Designed in collaboration with mental health professionals (MHPs), MindfulDiary takes a state-based approach to safely comply with the experts' guidelines while carrying on free-form conversations. Through a four-week field study involving 28 patients with major depressive disorder and five psychiatrists, we found that MindfulDiary supported patients in consistently enriching their daily records and helped psychiatrists better empathize with their patients through an understanding of their thoughts and daily contexts. Drawing on these findings, we discuss the implications of leveraging LLMs in the mental health domain, bridging the technical feasibility and their integration into clinical settings.
Continual Learning is a burgeoning domain in next-generation AI, focusing on training neural networks over a sequence of tasks akin to human learning. While CL provides an edge over traditional supervised learning, its central challenge remains to counteract catastrophic forgetting and ensure the retention of prior tasks during subsequent learning. Amongst various strategies to tackle this, replay based methods have emerged as preeminent, echoing biological memory mechanisms. However, these methods are memory intensive, often preserving entire data samples, an approach inconsistent with humans selective memory retention of salient experiences. While some recent works have explored the storage of only significant portions of data in episodic memory, the inherent nature of partial data necessitates innovative retrieval mechanisms. Current solutions, like inpainting, approximate full data reconstruction from partial cues, a method that diverges from genuine human memory processes. Addressing these nuances, this paper presents the Saliency Guided Hidden Associative Replay for Continual Learning. This novel framework synergizes associative memory with replay-based strategies. SHARC primarily archives salient data segments via sparse memory encoding. Importantly, by harnessing associative memory paradigms, it introduces a content focused memory retrieval mechanism, promising swift and near-perfect recall, bringing CL a step closer to authentic human memory processes. Extensive experimental results demonstrate the effectiveness of our proposed method for various continual learning tasks.
Many researchers and organizations, such as WHO and UNICEF, have raised awareness of the dangers of advertisements targeted at children. While most existing laws only regulate ads on television that may reach children, lawmakers have been working on extending regulations to online advertising and, for example, forbid (e.g., the DSA) or restrict (e.g., the COPPA) advertising based on profiling to children. At first sight, ad platforms such as Google seem to protect children by not allowing advertisers to target their ads to users who are less than 18 years old. However, this paper shows that other targeting features can be exploited to reach children. For example, on YouTube, advertisers can target their ads to users watching a particular video through placement-based targeting, a form of contextual targeting. Hence, advertisers can target children by placing their ads in children-focused videos. Through a series of ad experiments, we show that placement-based targeting is possible on children-focused videos and enables marketing to children. In addition, our ad experiments show that advertisers can use targeting based on profiling (e.g., interest, location, behavior) in combination with placement-based advertising on children-focused videos. We discuss the lawfulness of these two practices concerning DSA and COPPA. Finally, we investigate to which extent real-world advertisers are employing placement-based targeting to reach children with ads on YouTube. We propose a measurement methodology consisting of building a Chrome extension to capture ads and instrument six browser profiles to watch children-focused videos. Our results show that 7% of ads that appear in the children-focused videos we test use placement-based targeting. Hence, targeting children with ads on YouTube is not only hypothetically possible but also occurs in practice...
Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Applying artificial intelligence techniques in medical imaging is one of the most promising areas in medicine. However, most of the recent success in this area highly relies on large amounts of carefully annotated data, whereas annotating medical images is a costly process. In this paper, we propose a novel method, called FocalMix, which, to the best of our knowledge, is the first to leverage recent advances in semi-supervised learning (SSL) for 3D medical image detection. We conducted extensive experiments on two widely used datasets for lung nodule detection, LUNA16 and NLST. Results show that our proposed SSL methods can achieve a substantial improvement of up to 17.3% over state-of-the-art supervised learning approaches with 400 unlabeled CT scans.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.