亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The global pandemic caused by COVID-19 affects our lives in all aspects. As of September 11, more than 28 million people have tested positive for COVID-19 infection, and more than 911,000 people have lost their lives in this virus battle. Some patients can not receive appropriate medical treatment due the limits of hospitalization volume and shortage of ICU beds. An estimated future hospitalization is critical so that medical resources can be allocated as needed. In this study, we propose to use 4 recurrent neural networks to infer hospitalization change for the following week compared with the current week. Results show that sequence to sequence model with attention achieves a high accuracy of 0.938 and AUC of 0.850 in the hospitalization prediction. Our work has the potential to predict the hospitalization need and send a warning to medical providers and other stakeholders when a re-surge initializes.

相關內容

 Surge 是 iOS 與 macOS 平臺上的 Web 開發人員工(gong)具(ju)與代理實用程序(xu)。 

For many reinforcement learning (RL) applications, specifying a reward is difficult. This paper considers an RL setting where the agent obtains information about the reward only by querying an expert that can, for example, evaluate individual states or provide binary preferences over trajectories. From such expensive feedback, we aim to learn a model of the reward that allows standard RL algorithms to achieve high expected returns with as few expert queries as possible. To this end, we propose Information Directed Reward Learning (IDRL), which uses a Bayesian model of the reward and selects queries that maximize the information gain about the difference in return between plausibly optimal policies. In contrast to prior active reward learning methods designed for specific types of queries, IDRL naturally accommodates different query types. Moreover, it achieves similar or better performance with significantly fewer queries by shifting the focus from reducing the reward approximation error to improving the policy induced by the reward model. We support our findings with extensive evaluations in multiple environments and with different query types.

We use learning data of an e-assessment platform for an introductory mathematical statistics course to predict the probability of passing the final exam for each student. Based on these estimated probabilities we sent warning emails to students in the next cohort with a low predicted probability to pass. We analyze the effect of this treatment and propose statistical models to quantify the effect of the email notification. We detect a small but imprecisely estimated effect suggesting effectiveness of such interventions only when administered more intensively.

Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g., infotainment services) should frequently be migrated across different MEC servers to guarantee their stringent quality of service requirements. In this paper, we study the problem of service migration in a MEC-enabled vehicular network in order to minimize the total service latency and migration cost. This problem is formulated as a nonlinear integer program and is linearized to help obtaining the optimal solution using off-the-shelf solvers. Then, to obtain an efficient solution, it is modeled as a multi-agent Markov decision process and solved by leveraging deep Q learning (DQL) algorithm. The proposed DQL scheme performs a proactive services migration while ensuring their continuity under high mobility constraints. Finally, simulations results show that the proposed DQL scheme achieves close-to-optimal performance.

Monitoring and understanding affective states are important aspects of healthy functioning and treatment of mood-based disorders. Recent advancements of ubiquitous wearable technologies have increased the reliability of such tools in detecting and accurately estimating mental states (e.g., mood, stress, etc.), offering comprehensive and continuous monitoring of individuals over time. Previous attempts to model an individual's mental state were limited to subjective approaches or the inclusion of only a few modalities (i.e., phone, watch). Thus, the goal of our study was to investigate the capacity to more accurately predict affect through a fully automatic and objective approach using multiple commercial devices. Longitudinal physiological data and daily assessments of emotions were collected from a sample of college students using smart wearables and phones for over a year. Results showed that our model was able to predict next-day affect with accuracy comparable to state of the art methods.

The price of carbon emission rights play a crucial role in carbon trading markets. Therefore, accurate prediction of the price is critical. Taking the Shanghai pilot market as an example, this paper attempted to design a carbon emission purchasing strategy for enterprises, and establish a carbon emission price prediction model to help them reduce the purchasing cost. To make predictions more precise, we built a hybrid deep learning model by embedding Generalized Autoregressive Conditional Heteroskedastic (GARCH) into the Gate Recurrent Unit (GRU) model, and compared the performance with those of other models. Then, based on the Iceberg Order Theory and the predicted price, we proposed the purchasing strategy of carbon emission rights. As a result, the prediction errors of the GARCH-GRU model with a 5-day sliding time window were the minimum values of all six models. And in the simulation, the purchasing strategy based on the GARCH-GRU model was executed with the least cost as well. The carbon emission purchasing strategy constructed by the hybrid deep learning method can accurately send out timing signals, and help enterprises reduce the purchasing cost of carbon emission permits.

The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks. This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore's Law-era. It also discusses some of the ways that machine learning may also be able to help with some aspects of the circuit design process. Finally, it provides a sketch of at least one interesting direction towards much larger-scale multi-task models that are sparsely activated and employ much more dynamic, example- and task-based routing than the machine learning models of today.

Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.

Real-world applications often combine learning and optimization problems on graphs. For instance, our objective may be to cluster the graph in order to detect meaningful communities (or solve other common graph optimization problems such as facility location, maxcut, and so on). However, graphs or related attributes are often only partially observed, introducing learning problems such as link prediction which must be solved prior to optimization. We propose an approach to integrate a differentiable proxy for common graph optimization problems into training of machine learning models for tasks such as link prediction. This allows the model to focus specifically on the downstream task that its predictions will be used for. Experimental results show that our end-to-end system obtains better performance on example optimization tasks than can be obtained by combining state of the art link prediction methods with expert-designed graph optimization algorithms.

In this work, we compare three different modeling approaches for the scores of soccer matches with regard to their predictive performances based on all matches from the four previous FIFA World Cups 2002 - 2014: Poisson regression models, random forests and ranking methods. While the former two are based on the teams' covariate information, the latter method estimates adequate ability parameters that reflect the current strength of the teams best. Within this comparison the best-performing prediction methods on the training data turn out to be the ranking methods and the random forests. However, we show that by combining the random forest with the team ability parameters from the ranking methods as an additional covariate we can improve the predictive power substantially. Finally, this combination of methods is chosen as the final model and based on its estimates, the FIFA World Cup 2018 is simulated repeatedly and winning probabilities are obtained for all teams. The model slightly favors Spain before the defending champion Germany. Additionally, we provide survival probabilities for all teams and at all tournament stages as well as the most probable tournament outcome.

The existing image captioning approaches typically train a one-stage sentence decoder, which is difficult to generate rich fine-grained descriptions. On the other hand, multi-stage image caption model is hard to train due to the vanishing gradient problem. In this paper, we propose a coarse-to-fine multi-stage prediction framework for image captioning, composed of multiple decoders each of which operates on the output of the previous stage, producing increasingly refined image descriptions. Our proposed learning approach addresses the difficulty of vanishing gradients during training by providing a learning objective function that enforces intermediate supervisions. Particularly, we optimize our model with a reinforcement learning approach which utilizes the output of each intermediate decoder's test-time inference algorithm as well as the output of its preceding decoder to normalize the rewards, which simultaneously solves the well-known exposure bias problem and the loss-evaluation mismatch problem. We extensively evaluate the proposed approach on MSCOCO and show that our approach can achieve the state-of-the-art performance.

北京阿比特科技有限公司