亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this study, we address the challenge of solving elliptic equations with quasiperiodic coefficients. To achieve accurate and efficient computation, we introduce the projection method, which enables the embedding of quasiperiodic systems into higher-dimensional periodic systems. To enhance the computational efficiency, we propose a compressed storage strategy for the stiffness matrix by its multi-level block circulant structure, significantly reducing memory requirements. Furthermore, we design a diagonal preconditioner to efficiently solve the resulting high-dimensional linear system by reducing the condition number of the stiffness matrix. These techniques collectively contribute to the computational effectiveness of our proposed approach. Convergence analysis shows the spectral accuracy of the proposed method. We demonstrate the effectiveness and accuracy of our approach through a series of numerical examples. Moreover, we apply our method to achieve a highly accurate computation of the homogenized coefficients for a quasiperiodic multiscale elliptic equation.

相關內容

Eigenvalue transformations, which include solving time-dependent differential equations as a special case, have a wide range of applications in scientific and engineering computation. While quantum algorithms for singular value transformations are well studied, eigenvalue transformations are distinct, especially for non-normal matrices. We propose an efficient quantum algorithm for performing a class of eigenvalue transformations that can be expressed as a certain type of matrix Laplace transformation. This allows us to significantly extend the recently developed linear combination of Hamiltonian simulation (LCHS) method [An, Liu, Lin, Phys. Rev. Lett. 131, 150603, 2023; An, Childs, Lin, arXiv:2312.03916] to represent a wider class of eigenvalue transformations, such as powers of the matrix inverse, $A^{-k}$, and the exponential of the matrix inverse, $e^{-A^{-1}}$. The latter can be interpreted as the solution of a mass-matrix differential equation of the form $A u'(t)=-u(t)$. We demonstrate that our eigenvalue transformation approach can solve this problem without explicitly inverting $A$, reducing the computational complexity.

In the context of Discontinuous Galerkin methods, we study approximations of nonlinear variational problems associated with convex energies. We propose element-wise nonconforming finite element methods to discretize the continuous minimisation problem. Using $\Gamma$-convergence arguments we show that the discrete minimisers converge to the unique minimiser of the continuous problem as the mesh parameter tends to zero, under the additional contribution of appropriately defined penalty terms at the level of the discrete energies. We finally substantiate the feasibility of our methods by numerical examples.

We propose a novel, highly efficient, second-order accurate, long-time unconditionally stable numerical scheme for a class of finite-dimensional nonlinear models that are of importance in geophysical fluid dynamics. The scheme is highly efficient in the sense that only a (fixed) symmetric positive definite linear problem (with varying right hand sides) is involved at each time-step. The solutions to the scheme are uniformly bounded for all time. We show that the scheme is able to capture the long-time dynamics of the underlying geophysical model, with the global attractors as well as the invariant measures of the scheme converge to those of the original model as the step size approaches zero. In our numerical experiments, we take an indirect approach, using long-term statistics to approximate the invariant measures. Our results suggest that the convergence rate of the long-term statistics, as a function of terminal time, is approximately first order using the Jensen-Shannon metric and half-order using the L1 metric. This implies that very long time simulation is needed in order to capture a few significant digits of long time statistics (climate) correct. Nevertheless, the second order scheme's performance remains superior to that of the first order one, requiring significantly less time to reach a small neighborhood of statistical equilibrium for a given step size.

The study of diffeomorphism groups and their applications to problems in analysis and geometry has a long history. In geometric hydrodynamics, pioneered by V.~Arnold in the 1960s, one considers an ideal fluid flow as the geodesic motion on the infinite-dimensional group of volume-preserving diffeomorphisms of the fluid domain with respect to the metric defined by the kinetic energy. Similar considerations on the space of densities lead to a geometric description of optimal mass transport and the Kantorovich-Wasserstein metric. Likewise, information geometry associated with the Fisher-Rao metric and the Hellinger distance has an equally beautiful infinite-dimensional geometric description and can be regarded as a higher-order Sobolev analogue of optimal transportation. In this work we review various metrics on diffeomorphism groups relevant to this approach and introduce appropriate topology, smooth structures and dynamics on the corresponding infinite-dimensional manifolds. Our main goal is to demonstrate how, alongside topological hydrodynamics, Hamiltonian dynamics and optimal mass transport, information geometry with its elaborate toolbox has become yet another exciting field for applications of geometric analysis on diffeomorphism groups.

We consider a nonlocal functional equation that is a generalization of the mathematical model used in behavioral sciences. The equation is built upon an operator that introduces a convex combination and a nonlinear mixing of the function arguments. We show that, provided some growth conditions of the coefficients, there exists a unique solution in the natural Lipschitz space. Furthermore, we prove that the regularity of the solution is inherited from the smoothness properties of the coefficients. As a natural numerical method to solve the general case, we consider the collocation scheme of piecewise linear functions. We prove that the method converges with the error bounded by the error of projecting the Lipschitz function onto the piecewise linear polynomial space. Moreover, provided sufficient regularity of the coefficients, the scheme is of the second order measured in the supremum norm. A series of numerical experiments verify the proved claims and show that the implementation is computationally cheap and exceeds the frequently used Picard iteration by orders of magnitude in the calculation time.

We propose a tamed-adaptive Milstein scheme for stochastic differential equations in which the first-order derivatives of the coefficients are locally H\"older continuous of order $\alpha$. We show that the scheme converges in the $L_2$-norm with a rate of $(1+\alpha)/2$ over both finite intervals $[0, T]$ and the infinite interval $(0, +\infty)$, under certain growth conditions on the coefficients.

In this paper we consider a class of conjugate discrete-time Riccati equations (CDARE), arising originally from the linear quadratic regulation problem for discrete-time antilinear systems. Recently, we have proved the existence of the maximal solution to the CDARE with a nonsingular control weighting matrix under the framework of the constructive method. Our contribution in the work is to finding another meaningful Hermitian solutions, which has received little attention in this topic. Moreover, we show that some extremal solutions cannot be attained at the same time, and almost (anti-)stabilizing solutions coincide with some extremal solutions. It is to be expected that our theoretical results presented in this paper will play an important role in the optimal control problems for discrete-time antilinear systems.

We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.

The aim of this study is to implement a method to remove ambient noise in biomedical sounds captured in auscultation. We propose an incremental approach based on multichannel non-negative matrix partial co-factorization (NMPCF) for ambient denoising focusing on high noisy environment with a Signal-to-Noise Ratio (SNR) <= -5 dB. The first contribution applies NMPCF assuming that ambient noise can be modelled as repetitive sound events simultaneously found in two single-channel inputs captured by means of different recording devices. The second contribution proposes an incremental algorithm, based on the previous multichannel NMPCF, that refines the estimated biomedical spectrogram throughout a set of incremental stages by eliminating most of the ambient noise that was not removed in the previous stage at the expense of preserving most of the biomedical spectral content. The ambient denoising performance of the proposed method, compared to some of the most relevant state-of-the-art methods, has been evaluated using a set of recordings composed of biomedical sounds mixed with ambient noise that typically surrounds a medical consultation room to simulate high noisy environments with a SNR from -20 dB to -5 dB. Experimental results report that: (i) the performance drop suffered by the proposed method is lower compared to MSS and NLMS; (ii) unlike what happens with MSS and NLMS, the proposed method shows a stable trend of the average SDR and SIR results regardless of the type of ambient noise and the SNR level evaluated; and (iii) a remarkable advantage is the high robustness of the estimated biomedical sounds when the two single-channel inputs suffer from a delay between them.

In this paper, we apply the practical GADI-HS iteration as a smoother in algebraic multigrid (AMG) method for solving second-order non-selfadjoint elliptic problem. Additionally, we prove the convergence of the derived algorithm and introduce a data-driven parameter learing method called Gaussian process regression (GPR) to predict optimal parameters. Numerical experimental results show that using GPR to predict parameters can save a significant amount of time cost and approach the optimal parameters accurately.

北京阿比特科技有限公司