We investigate the descriptive complexity of a class of neural networks with unrestricted topologies and piecewise polynomial activation functions. We consider the general scenario where the running time is unlimited and floating-point numbers are used for simulating reals. We characterize a class of these neural networks with a rule-based logic for Boolean networks. In particular, we show that the sizes of the neural networks and the corresponding Boolean rule formulae are polynomially related. In fact, in the direction from Boolean rules to neural networks, the blow-up is only linear. We also analyze the delays in running times due to the translations. In the translation from neural networks to Boolean rules, the time delay is polylogarithmic in the neural network size and linear in time. In the converse translation, the time delay is linear in both factors.
We propose an abstract framework for analyzing the convergence of least-squares methods based on residual minimization when feasible solutions are neural networks. With the norm relations and compactness arguments, we derive error estimates for both continuous and discrete formulations of residual minimization in strong and weak forms. The formulations cover recently developed physics-informed neural networks based on strong and variational formulations.
Sewer pipe network systems are an important part of civil infrastructure, and in order to find a good trade-off between maintenance costs and system performance, reliable sewer pipe degradation models are essential. In this paper, we present a large-scale case study in the city of Breda in the Netherlands. Our dataset has information on sewer pipes built since the 1920s and contains information on different covariates. We also have several types of damage, but we focus our attention on infiltrations, surface damage, and cracks. Each damage has an associated severity index ranging from 1 to 5. To account for the characteristics of sewer pipes, we defined 6 cohorts of interest. Two types of discrete-time Markov chains (DTMC), which we called Chain `Multi' and `Single' (where Chain `Multi' contains additional transitions compared to Chain `Single'), are commonly used to model sewer pipe degradation at the pipeline level, and we want to evaluate which suits better our case study. To calibrate the DTMCs, we define an optimization process using Sequential Least-Squares Programming to find the DTMC parameter that best minimizes the root mean weighted square error. Our results show that for our case study, there is no substantial difference between Chain `Multi' and `Single', but the latter has fewer parameters and can be easily trained. Our DTMCs are useful to compare the cohorts via the expected values, e.g., concrete pipes carrying mixed and waste content reach severe levels of surface damage more quickly compared to concrete pipes carrying rainwater, which is a phenomenon typically identified in practice.
Social media platforms play an essential role in crisis communication, but analyzing crisis-related social media texts is challenging due to their informal nature. Transformer-based pre-trained models like BERT and RoBERTa have shown success in various NLP tasks, but they are not tailored for crisis-related texts. Furthermore, general-purpose sentence encoders are used to generate sentence embeddings, regardless of the textual complexities in crisis-related texts. Advances in applications like text classification, semantic search, and clustering contribute to effective processing of crisis-related texts, which is essential for emergency responders to gain a comprehensive view of a crisis event, whether historical or real-time. To address these gaps in crisis informatics literature, this study introduces CrisisTransformers, an ensemble of pre-trained language models and sentence encoders trained on an extensive corpus of over 15 billion word tokens from tweets associated with more than 30 crisis events, including disease outbreaks, natural disasters, conflicts, and other critical incidents. We evaluate existing models and CrisisTransformers on 18 crisis-specific public datasets. Our pre-trained models outperform strong baselines across all datasets in classification tasks, and our best-performing sentence encoder improves the state-of-the-art by 17.43% in sentence encoding tasks. Additionally, we investigate the impact of model initialization on convergence and evaluate the significance of domain-specific models in generating semantically meaningful sentence embeddings. All models are publicly released (//huggingface.co/crisistransformers), with the anticipation that they will serve as a robust baseline for tasks involving the analysis of crisis-related social media texts.
This paper studies the relationship between undirected (unrooted) and directed (rooted) phylogenetic networks. We describe a polynomial-time algorithm for deciding whether an undirected nonbinary phylogenetic network, given the locations of the root and reticulation vertices, can be oriented as a directed nonbinary phylogenetic network. Moreover, we characterize when this is possible and show that, in such instances, the resulting directed nonbinary phylogenetic network is unique. In addition, without being given the location of the root and the reticulation vertices, we describe an algorithm for deciding whether an undirected binary phylogenetic network $N$ can be oriented as a directed binary phylogenetic network of a certain class. The algorithm is fixed-parameter tractable (FPT) when the parameter is the level of $N$ and is applicable to classes of directed phylogenetic networks that satisfy certain conditions. As an example, we show that the well-studied class of binary tree-child networks satisfies these conditions.
Water resources serve as the cornerstone of human livelihoods and economic progress, with intrinsic links to both public health and environmental well-being. The accurate prediction of water quality stands as a pivotal factor in enhancing water resource management and combating pollution. This research, employing diverse performance metrics, assesses the efficacy of five distinct models, namely, linear regression, Random Forest, XGBoost, LightGBM, and MLP neural network, in forecasting pH values within Georgia, USA. Concurrently, LightGBM attains the highest average precision among all models examined. Tree-based models underscore their supremacy in addressing regression challenges. Furthermore, the performance of MLP neural network is sensitive to feature scaling. Additionally, we expound upon and dissect the reasons behind the superior precision of the machine learning models when they are compared to the original study, which factors in time dependencies and spatial considerations. The primary objective of this endeavor is to establish a robust predictive pipeline, specifically tailored for practical applications. It caters not only to individuals well-versed in the realm of data science but also to those lacking specialization in particular application domains. In essence, we offer a fresh perspective for achieving relative precision in data science methodologies, emphasizing both prediction accuracy and interpretability.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.