The evolution from traditional IP-based networking to Named Data Networking (NDN) represents a paradigm shift to address the inherent limitations of current network architectures, such as scalability, mobility, and efficient data distribution. NDN introduces an information-centric approach where data is identified and retrieved based on names rather than locations, offering more efficient data dissemination and enhanced security. However, the transition to NDN, alongside the need to integrate it with existing IP infrastructures, necessitates the development of flexible and scalable testbeds that support diverse experimental scenarios across various physical media and networking protocol stacks. In this paper, we present NetScaNDN, a scalable, flexible, and plug-and-play testbed designed to facilitate such experiments. NetScaNDNl employs an automated process for node discovery, configuration, and installation, enabling seamless setup and execution of experiments on both wired and wireless infrastructures simultaneously. Additionally, it incorporates a central log repository using the syslog protocol, allowing comprehensive measurement and evaluation of user-defined metrics across different network layers. NetScaNDN offers a robust platform for researchers to explore and validate various networking scenarios, advancing the study of IP and NDN-based applications.
We introduce EMMA, an End-to-end Multimodal Model for Autonomous driving. Built on a multi-modal large language model foundation, EMMA directly maps raw camera sensor data into various driving-specific outputs, including planner trajectories, perception objects, and road graph elements. EMMA maximizes the utility of world knowledge from the pre-trained large language models, by representing all non-sensor inputs (e.g. navigation instructions and ego vehicle status) and outputs (e.g. trajectories and 3D locations) as natural language text. This approach allows EMMA to jointly process various driving tasks in a unified language space, and generate the outputs for each task using task-specific prompts. Empirically, we demonstrate EMMA's effectiveness by achieving state-of-the-art performance in motion planning on nuScenes as well as competitive results on the Waymo Open Motion Dataset (WOMD). EMMA also yields competitive results for camera-primary 3D object detection on the Waymo Open Dataset (WOD). We show that co-training EMMA with planner trajectories, object detection, and road graph tasks yields improvements across all three domains, highlighting EMMA's potential as a generalist model for autonomous driving applications. However, EMMA also exhibits certain limitations: it can process only a small amount of image frames, does not incorporate accurate 3D sensing modalities like LiDAR or radar and is computationally expensive. We hope that our results will inspire further research to mitigate these issues and to further evolve the state of the art in autonomous driving model architectures.
Beyond 5G and 6G networks are expected to support new and challenging use cases and applications that depend on a certain level of Quality of Service (QoS) to operate smoothly. Predicting the QoS in a timely manner is of high importance, especially for safety-critical applications as in the case of vehicular communications. Although until recent years the QoS prediction has been carried out by centralized Artificial Intelligence (AI) solutions, a number of privacy, computational, and operational concerns have emerged. Alternative solutions have surfaced (e.g. Split Learning, Federated Learning), distributing AI tasks of reduced complexity across nodes, while preserving the privacy of the data. However, new challenges rise when it comes to scalable distributed learning approaches, taking into account the heterogeneous nature of future wireless networks. The current work proposes DISTINQT, a novel multi-headed input privacy-aware distributed learning framework for QoS prediction. Our framework supports multiple heterogeneous nodes, in terms of data types and model architectures, by sharing computations across them. This enables the incorporation of diverse knowledge into a sole learning process that will enhance the robustness and generalization capabilities of the final QoS prediction model. DISTINQT also contributes to data privacy preservation by encoding any raw input data into highly complex, compressed, and irreversible latent representations before any transmission. Evaluation results showcase that DISTINQT achieves a statistically identical performance compared to its centralized version, while also proving the validity of the privacy preserving claims. DISTINQT manages to achieve a reduction in prediction error of up to 65% on average against six state-of-the-art centralized baseline solutions presented in the Tele-Operated Driving use case.
Entity alignment (EA) refers to the task of linking entities in different knowledge graphs (KGs). Existing EA methods rely heavily on structural isomorphism. However, in real-world KGs, aligned entities usually have non-isomorphic neighborhood structures, which paralyses the application of these structure-dependent methods. In this paper, we investigate and tackle the problem of entity alignment between heterogeneous KGs. First, we propose two new benchmarks to closely simulate real-world EA scenarios of heterogeneity. Then we conduct extensive experiments to evaluate the performance of representative EA methods on the new benchmarks. Finally, we propose a simple and effective entity alignment framework called Attr-Int, in which innovative attribute information interaction methods can be seamlessly integrated with any embedding encoder for entity alignment, improving the performance of existing entity alignment techniques. Experiments demonstrate that our framework outperforms the state-of-the-art approaches on two new benchmarks.
Spurred by the demand for interpretable models, research on eXplainable AI for language technologies has experienced significant growth, with feature attribution methods emerging as a cornerstone of this progress. While prior work in NLP explored such methods for classification tasks and textual applications, explainability intersecting generation and speech is lagging, with existing techniques failing to account for the autoregressive nature of state-of-the-art models and to provide fine-grained, phonetically meaningful explanations. We address this gap by introducing Spectrogram Perturbation for Explainable Speech-to-text Generation (SPES), a feature attribution technique applicable to sequence generation tasks with autoregressive models. SPES provides explanations for each predicted token based on both the input spectrogram and the previously generated tokens. Extensive evaluation on speech recognition and translation demonstrates that SPES generates explanations that are faithful and plausible to humans.
Alongside the rapid development of Large Language Models (LLMs), there has been a notable increase in efforts to integrate LLM techniques in information retrieval (IR) and search engines (SE). Recently, an additional post-ranking stage is suggested in SE to enhance user satisfaction in practical applications. Nevertheless, research dedicated to enhancing the post-ranking stage through LLMs remains largely unexplored. In this study, we introduce a novel paradigm named Large Language Models for Post-Ranking in search engine (LLM4PR), which leverages the capabilities of LLMs to accomplish the post-ranking task in SE. Concretely, a Query-Instructed Adapter (QIA) module is designed to derive the user/item representation vectors by incorporating their heterogeneous features. A feature adaptation step is further introduced to align the semantics of user/item representations with the LLM. Finally, the LLM4PR integrates a learning to post-rank step, leveraging both a main task and an auxiliary task to fine-tune the model to adapt the post-ranking task. Experiment studies demonstrate that the proposed framework leads to significant improvements and exhibits state-of-the-art performance compared with other alternatives.
Software Defined Networking (SDN) has become a new paradigm in computer networking, introducing a decoupled architecture that separates the network into the data plane and the control plane. The control plane acts as the centralized brain, managing configuration updates and network management tasks, while the data plane handles traffic based on the configurations provided by the control plane. Given its asynchronous distributed nature, SDN can experience data races due to message passing between the control and data planes. This paper presents Tracer, a tool designed to automatically detect and explain the occurrence of data races in DyNetKAT SDN models. DyNetKAT is a formal framework for modeling and analyzing SDN behaviors, with robust operational semantics and a complete axiomatization implemented in Maude. Built on NetKAT, a language leveraging Kleene Algebra with Tests to express data plane forwarding behavior, DyNetKAT extends these capabilities by adding primitives for communication between the control and data planes. Tracer exploits the DyNetKAT axiomatization and enables race detection in SDNs based on Lamport vector clocks. Tracer is a publicly available tool.
We propose DistillNeRF, a self-supervised learning framework addressing the challenge of understanding 3D environments from limited 2D observations in outdoor autonomous driving scenes. Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs with limited view overlap, and is trained self-supervised with differentiable rendering to reconstruct RGB, depth, or feature images. Our first insight is to exploit per-scene optimized Neural Radiance Fields (NeRFs) by generating dense depth and virtual camera targets from them, which helps our model to learn enhanced 3D geometry from sparse non-overlapping image inputs. Second, to learn a semantically rich 3D representation, we propose distilling features from pre-trained 2D foundation models, such as CLIP or DINOv2, thereby enabling various downstream tasks without the need for costly 3D human annotations. To leverage these two insights, we introduce a novel model architecture with a two-stage lift-splat-shoot encoder and a parameterized sparse hierarchical voxel representation. Experimental results on the NuScenes and Waymo NOTR datasets demonstrate that DistillNeRF significantly outperforms existing comparable state-of-the-art self-supervised methods for scene reconstruction, novel view synthesis, and depth estimation; and it allows for competitive zero-shot 3D semantic occupancy prediction, as well as open-world scene understanding through distilled foundation model features. Demos and code will be available at //distillnerf.github.io/.
The introduction of ChatGPT has led to a significant increase in the utilization of Large Language Models (LLMs) for addressing downstream tasks. There's an increasing focus on cost-efficient training and deployment within this context. Low-cost training and deployment of LLMs represent the future development trend. This paper reviews the evolution of large language model training techniques and inference deployment technologies aligned with this emerging trend. The discussion on training includes various aspects, including data preprocessing, training architecture, pre-training tasks, parallel training, and relevant content related to model fine-tuning. On the inference side, the paper covers topics such as model compression, parallel computation, memory scheduling, and structural optimization. It also explores LLMs' utilization and provides insights into their future development.
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.
Generative Adversarial networks (GANs) have obtained remarkable success in many unsupervised learning tasks and unarguably, clustering is an important unsupervised learning problem. While one can potentially exploit the latent-space back-projection in GANs to cluster, we demonstrate that the cluster structure is not retained in the GAN latent space. In this paper, we propose ClusterGAN as a new mechanism for clustering using GANs. By sampling latent variables from a mixture of one-hot encoded variables and continuous latent variables, coupled with an inverse network (which projects the data to the latent space) trained jointly with a clustering specific loss, we are able to achieve clustering in the latent space. Our results show a remarkable phenomenon that GANs can preserve latent space interpolation across categories, even though the discriminator is never exposed to such vectors. We compare our results with various clustering baselines and demonstrate superior performance on both synthetic and real datasets.