We present a framework for constructing a first-order hyperbolic system whose solution approximates that of a desired higher-order evolution equation. Constructions of this kind have received increasing interest in recent years, and are potentially useful as either analytical or computational tools for understanding the corresponding higher-order equation. We perform a systematic analysis of a family of linear model equations and show that for each member of this family there is a stable hyperbolic approximation whose solution converges to that of the model equation in a certain limit. We then show through several examples that this approach can be applied successfully to a very wide range of nonlinear PDEs of practical interest.
This paper leans on two similar areas so far detached from each other. On the one hand, Dung's pioneering contributions to abstract argumentation, almost thirty years ago, gave rise to a plethora of successors, including abstract dialectical frameworks (ADFs). On the other hand, Boolean networks (BNs), devised as models of gene regulation, have been successful for studying the behavior of molecular processes within cells. ADFs and BNs are similar to each other: both can be viewed as functions from vectors of bits to vectors of bits. As soon as similarities emerge between these two formalisms, however, differences appear. For example, conflict-freedom is prominent in argumentation (where we are interested in a self-consistent, i.e., conflict-free, set of beliefs) but absent in BNs. By contrast, asynchrony (where only one gene is updated at a time) is conspicuous in BNs and lacking in argumentation. Finally, while a monotonicity-based notion occurs in signed reasoning of both argumentation and gene regulation, a different, derivative-based notion only appears in the BN literature. To identify common mathematical structure between both formalisms, these differences need clarification. This contribution is a partial review of both these areas, where we cover enough ground to exhibit their more evident similarities, to then reconcile some of their apparent differences. We highlight a range of avenues of research resulting from ironing out discrepancies between these two fields. Unveiling their common concerns should enable these two areas to cross-fertilize so as to transfer ideas and results between each other.
We review some recent development in the theory of spatial extremes related to Pareto Processes and modeling of threshold exceedances. We provide theoretical background, methodology for modeling, simulation and inference as well as an illustration to wave height modelling. This preprint is an author version of a chapter to appear in a collaborative book.
We investigate the set of invariant idempotent probabilities for countable idempotent iterated function systems (IFS) defined in compact metric spaces. We demonstrate that, with constant weights, there exists a unique invariant idempotent probability. Utilizing Secelean's approach to countable IFSs, we introduce partially finite idempotent IFSs and prove that the sequence of invariant idempotent measures for these systems converges to the invariant measure of the original countable IFS. We then apply these results to approximate such measures with discrete systems, producing, in the one-dimensional case, data series whose Higuchi fractal dimension can be calculated. Finally, we provide numerical approximations for two-dimensional cases and discuss the application of generalized Higuchi dimensions in these scenarios.
Linear causal disentanglement is a recent method in causal representation learning to describe a collection of observed variables via latent variables with causal dependencies between them. It can be viewed as a generalization of both independent component analysis and linear structural equation models. We study the identifiability of linear causal disentanglement, assuming access to data under multiple contexts, each given by an intervention on a latent variable. We show that one perfect intervention on each latent variable is sufficient and in the worst case necessary to recover parameters under perfect interventions, generalizing previous work to allow more latent than observed variables. We give a constructive proof that computes parameters via a coupled tensor decomposition. For soft interventions, we find the equivalence class of latent graphs and parameters that are consistent with observed data, via the study of a system of polynomial equations. Our results hold assuming the existence of non-zero higher-order cumulants, which implies non-Gaussianity of variables.
This work aims to extend the well-known high-order WENO finite-difference methods for systems of conservation laws to nonconservative hyperbolic systems. The main difficulty of these systems both from the theoretical and the numerical points of view comes from the fact that the definition of weak solution is not unique: according to the theory developed by Dal Maso, LeFloch, and Murat in 1995, it depends on the choice of a family of paths. A general strategy is proposed here in which WENO operators are not only used to reconstruct fluxes but also the nonconservative products of the system. Moreover, if a Roe linearization is available, the nonconservative products can be computed through matrix-vector operations instead of path-integrals. The methods are extended to problems with source terms and two different strategies are introduced to obtain well-balanced schemes. These numerical schemes will be then applied to the two-layer shallow water equations in one- and two- dimensions to obtain high-order methods that preserve water-at-rest steady states.
We propose an extremely versatile approach to address a large family of matrix nearness problems, possibly with additional linear constraints. Our method is based on splitting a matrix nearness problem into two nested optimization problems, of which the inner one can be solved either exactly or cheaply, while the outer one can be recast as an unconstrained optimization task over a smooth real Riemannian manifold. We observe that this paradigm applies to many matrix nearness problems of practical interest appearing in the literature, thus revealing that they are equivalent in this sense to a Riemannian optimization problem. We also show that the objective function to be minimized on the Riemannian manifold can be discontinuous, thus requiring regularization techniques, and we give conditions for this to happen. Finally, we demonstrate the practical applicability of our method by implementing it for a number of matrix nearness problems that are relevant for applications and are currently considered very demanding in practice. Extensive numerical experiments demonstrate that our method often greatly outperforms its predecessors, including algorithms specifically designed for those particular problems.
This paper addresses second-order stochastic optimization for estimating the minimizer of a convex function written as an expectation. A direct recursive estimation technique for the inverse Hessian matrix using a Robbins-Monro procedure is introduced. This approach enables to drastically reduces computational complexity. Above all, it allows to develop universal stochastic Newton methods and investigate the asymptotic efficiency of the proposed approach. This work so expands the application scope of secondorder algorithms in stochastic optimization.
Homogenisation empowers the efficient macroscale system level prediction of physical problems with intricate microscale structures. Here we develop an innovative powerful, rigorous and flexible framework for asymptotic homogenisation of dynamics at the finite scale separation of real physics, with proven results underpinned by modern dynamical systems theory. The novel systematic approach removes most of the usual assumptions, whether implicit or explicit, of other methodologies. By no longer assuming averages the methodology constructs so-called multi-continuum or micromorphic homogenisations systematically based upon the microscale physics. The developed framework and approach enables a user to straightforwardly choose and create such homogenisations with clear physical and theoretical support, and of highly controllable accuracy and fidelity.
We present a geometric framework for the processing of SPD-valued data that preserves subspace structures and is based on the efficient computation of extreme generalized eigenvalues. This is achieved through the use of the Thompson geometry of the semidefinite cone. We explore a particular geodesic space structure in detail and establish several properties associated with it. Finally, we review a novel inductive mean of SPD matrices based on this geometry.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.